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Abstract
The 64-antenna MeerKAT radio telescope is a precursor

to the Square Kilometre Array. The telescope’s correlator
beamformer streams data at 600Gb/s to the science data
processing pipeline that must consume it in real time. This
requires significant compute resources, which are provided
by a cluster of heterogeneous hardware nodes. Effective
utilisation of the available resources is a critical design goal,
made more challenging by requiring multiple, highly con-
figurable pipelines. We initially used a static allocation of
processes to hardware nodes, but this approach is insuffi-
cient as the project scales up. We describe recent improve-
ments to our distributed container deployment, using Apache
Mesos for orchestration. We also discuss how issues like non-
uniform memory access (NUMA), network partitions, and
fractional allocation of graphical processing units (GPUs)
are addressed using a custom scheduler for Mesos.

INTRODUCTION
The MeerKAT radio telescope [1] is currently under con-

struction in the Karoo region of South Africa. In total it will
have 64 dish antennas when construction is completed in
2018. It is a precursor to the larger Square Kilometre Array
project [2], and will be integrated into the mid-frequency
array, SKA1 MID.
The focus of this work is the recent advances in the de-

ployment process of the Science Data Processing pipelines,
leveraging so-called “container orchestration” tools that have
become common in micro services architectures [3]. We
are using Docker containers [4]. In this context, container
orchestration refers to automating the following: deciding
which host a container should be run on and launching it, con-
necting containers together, and monitoring and reporting
on the state of the containers and the services they provide.
This containerised, microservices architecture was se-

lected and combined with continuous integration and deploy-
ment tools to achieve a number of benefits: quick deploy-
ment which minimises downtime for upgrades, simple and
consistent deployment, higher availability as faulty hardware
is easily switched out, and improved package management—
some software packages are difficult to install due to depen-
dency issues, but by confining each to a dedicated container
this problem is simplified.
This paper is organised as follows. First, the MeerKAT

system is summarised for context. Next, the Science Data
Processor is discussed, as well as the motivation for the
changes to the orchestration process. The Apache Mesos
platform [5, 6] and the role of scheduler frameworks is then
∗ ajoubert@ska.ac.za
† bmerry@ska.ac.za

presented. Details of our custom scheduler framework fol-
low, before concluding.

MEERKAT SYSTEM OVERVIEW
This section provides only a brief overview — more de-

tails are available [7]. There are three major parts to the tele-
scope data processing pipeline: antennas, correlator beam-
former (CBF), and Science Data Processor (SDP).

Each antenna provides a digitised stream of data at a rate
of approximately 34Gb/s, depending on the frequency band,
for a total of 2.2 Tb/s. This data is processed in real time by
the CBF using banks of Field Programmable Gate Arrays
(FPGAs). Tasks such as frequency channelisation, baseline
correlation and beamforming are performed by the CBF.
The CBF output is ingested by the SDP which performs

tasks such as imaging and calibration. The maximum data
rate expected to be ingested by the SDP is approximately
600Gb/s. This data is transmitted from the CBF in a number
of streams, with up to 17Gb/s in a single stream. While some
streams can be split and distributed across nodes, others need
to be processed in a single location. Thus, we need to extract
the maximum performance from each node.
Overall management of all the telescope’s subsystems,

including antennas, CBF and SDP, is handled by the Control
And Monitoring system (CAM).

SCIENCE DATA PROCESSOR
The physical hardware planned to implement the SDP

cluster includes 10Gb/s and 40Gb/s Ethernet switches, ap-
proximately 50 dual-socket servers, most of which include
multiple Graphics Processing Units (GPUs), and an array of
spinning disk, solid state and tape drives for the archival of
data. Other than noting that these nodes are heterogeneous,
with different Central Processing Units (CPUs), GPUs, mem-
ory and networking capabilities, the details of each node are
inconsequential for this paper and not discussed further.
The processing pipeline moves the data through various

logical processes that are distributed over this compute clus-
ter hardware. Depending on the science being performed,
the configuration of the pipeline changes. This typically hap-
pens a few times per day. The design of the MeerKAT tele-
scope requires multiple instances of the processing pipeline
to be active simultaneously. Once the science workload for
a pipeline is completed, the resources can be released.
While the SDP pipeline does consist of many small soft-

ware processes each doing a part of the work, it is not a
conventional micro-services architecture [8]. The control
plane does not use Hypertext Transfer Protocol (HTTP) or
a message bus. Instead it uses a simple remote procedure
call protocol named KATCP — the Karoo Array Telescope
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Control Protocol [9]. The data plane uses multicast User
Datagram Protocol (UDP) rather than the more common
Transmission Control Protocol (TCP), due to the real-time
constraints. Many of the processes in the pipeline have state,
which must be maintained at least for the duration of the
science observations being performed in a particular config-
uration.

CAM requests changes in the science pipeline configura-
tion via the SDP’s master controller. This master controller
is a long-running process that manages the SDP pipelines at
a high level. The master controller is responsible for starting
or stopping the necessary Docker containers and reporting
general SDP health.

DEPLOYMENT HISTORY AND
MOTIVATION FOR CHANGE

The very earliest versions of the SDP were deployed by
manually checking out source code on production servers,
installing it, and restarting the affected services. While sim-
ple to do, this required manual intervention from developers,
and was error prone.
As time allowed, the tooling improved. Provisioning of

servers was automated using the Fully Automatic Installa-
tion (FAI) tool [10], and Ansible [11] scripts. Jenkins [12] is
used for Continuous Integration— testing code and building
Docker images. At runtime, monitoring and analysis is per-
formed using Elasticsearch [13], LogStash [14], Kibana [15],
Grafana [16], and Prometheus [17].

Static Allocation
The SDP master controller used to have a static configu-

ration specifying which containers to run on which compute
nodes. In this implementation, a single instance of the mas-
ter controller runs on a predefined node, while the Docker
daemon, dockerd, runs on all nodes.
This works well in the ideal case, but fails if a required

node is down. It is also easy to overload one node while oth-
ers are underutilised. Thus a more dynamic implementation
that scales automatically was sought.

Dynamic Allocation
In order to perform dynamic allocation of the containers,

an orchestration mechanism was needed. Such a mechanism
would abstract the cluster of compute nodes into a single
pool of resources and automatically place containers in an
efficient, rule-based way. Monitoring the health of the nodes
and running containers, and maintaining the required state is
also important. Such software could be written from scratch,
but it is far more effective to use an existing orchestration
tool.

There are many to choose from, including Apache Mesos,
Kubernetes [18], Docker Swarm [19] and Hashicorp No-
mad [20]. We will not perform a detailed analysis of all
of these. One of the main differences between them is the
way the scheduling is performed. In this context, scheduling
refers to deciding where to place the containers required to

execute a particular job or perform a service. In other words,
mapping application code to compute infrastructure.

There are three broad categories of schedulers [21]: mono-
lithic (e.g., Swarm), two-level (e.g., Mesos) and shared state
(e.g., Kubernetes and Nomad). The differences relate to the
concurrency and optimism of the schedulers. The choice be-
comes especially important when going to very large scale,
with the monolithic architecture scaling least well. In our
case, our compute cluster is not on the order of thousands of
nodes, and the rate of scheduling is very low — only a few
times per day. Thus the performance of any of these would
be adequate.

Of more importance to us was the ability to plug in a cus-
tom scheduler framework which could be managed by the
SDP master controller. A few of the tools discussed allow
custom schedulers in some form, although this may require
recompilation [22,23]. At the time this work was starting,
we briefly investigated the capabilities of Kubernetes, Mesos
and Docker Swarm. Mesos, which was specifically designed
to handle multiple schedulers, including custom implemen-
tations, was selected as the most suitable. Note that ongoing
development of all of these tools may mean that Mesos is
not necessarily the optimal choice for new projects.

MESOS OVERVIEW
A brief introduction is given here to provide some context

for the discussion of our custom scheduler in the next section.

Mesos Architecture
The architecture is shown in Fig. 1. Overall management

of the cluster is handled by a master. For redundancy, there
can be multiple masters running, with a single one elected as
the leader, and the remainder on standby. The leader election
is handled by a distributed key-value store called ZooKeeper,
which can be run on multiple nodes for high availability. The
worker nodes are known as agents.

Agent N

Framework B
Executor

MESOS MASTER QUORUM

LEADER
Master

STANDBY

Master

STANDBY

Master

Framework A

Scheduler

Framework B

Scheduler

Agent 1

Framework A
Executor

…

OFFER
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OFFER

OFFER

ZK ZK

ZK

TASK
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Figure 1: Example of a Mesos system architecture, where
ZK refers to ZooKeeper. Image based on [24].

The remainder of the system is made up by one or more
frameworks. Each framework consists of a scheduler and
optionally a custom executor, which need to work together
to perform tasks for the user.
A scheduler is responsible for scheduling, placement,

replication and failover. There can be multiple sched-
ulers, each customised for certain types of workloads, or
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even duplicate schedulers, if required for scaling or redun-
dancy. There are many readily available schedulers, includ-
ing Marathon [25] for long running services, Chronos [26]
for batch processing and Spark [27] for data processing.
The executor knows how to run a particular task on a

compute node. For example, there is a standard executor
that can launch and monitor Docker containers, and shell
scripts. While rarely necessary, a custom executor can be
implemented, if the user needs non-standard behaviour.

Mesos Principle of Operation
The two-level scheduler in Mesos is implemented partly

in the master and partly in the scheduler frameworks. The
master acts as the central resource allocator. The agents
inform the master of the resources they have available. The
master’s resource allocator considers the pool of available
resources and decides to which scheduler to offer a portion
of the resources. This would include details like the amount
of CPU and memory being offered. The allocator attempts
to achieve dominant resource fairness (DRF) [28] across
all schedulers. While the offer is made, the resources are
locked, and will not be offered to any other schedulers.
The scheduler can either accept or reject the offer. If it

accepts, it provides a set of tasks that must be executed, each
using a fraction of the resources. For example if the offer
has 2 processor cores and 3GB of memory, the scheduler
may decide to run two tasks: one task using 1.5 cores and
1GB of memory, and another using 0.25 cores and 2GB of
memory. Unused resources return to the allocator and may
be offered again later. In this way, each scheduler can decide
exactly where to place its tasks in the cluster, based on its
own set of rules. If the scheduler has no work to do, it can
suppress offers from the master. Later, when it has more
work, it can revive offers.

The tasks to run are received by the master which then
launches them using the appropriate executor on the agent.
Status from the tasks is fed back to the scheduler. The sched-
uler may also decide to terminate a task before completion
— such requests are made to the master, which passes them
on to the executor.

SDP CUSTOM SCHEDULER
An existing Mesos framework could have been modified

to work with the SDP’s existing master controller, but as the
master controller already included some scheduling code,
it was decided to extended this into a new Mesos frame-
work instead. Extending an existing framework may have
worked. For example, Marathon has many benefits with
regards to high availability, but we are not sure if we could
have worked around some of the issues we found, specific
to our requirements.

We did not need to create a custom executor as the Mesos
Default Executor’s ability to run Docker containers was
sufficient.

Overview
When activating an SDP pipeline to process a set of sci-

ence observations the following pseudocode illustrates the
steps followed by the master controller. The italicised names
refer to functions from the Mesos scheduler driver Applica-
tion Programming Interface (API):

// receive configure pipeline
// request from CAM:
call reviveOffers;
while not sufficient resources do

receive resourceOffers;
end
call suppressOffers;
create details of tasks to be run;
while not all tasks started do

receive statusUpdate callbacks;
end
// pipeline ready

The program flow is very straightforward, with the most
work required when creating the details of the tasks to be
run. This is the point at which our custom scheduler must
decide where to place each container and what command-
line options to use.

NUMA Awareness and Core Affinity
We are using multiprocessor computers which have non-

uniform memory access (NUMA) architectures. Each CPU
has its own memory bank. One CPU can access the memory
of another CPU, but this is over a slower bus and reduces
performance. We benchmarked a small application that un-
packs the type of data we expect to receive over the network,
using memory only. By forcing the application to run on a
single NUMA node, we saw performance increase by ap-
proximately 30%. These kind of performance deltas are re-
ported in the literature [29,30], but have not been addressed
specifically for container orchestration tools.
Docker does not provide a direct mechanism to ensure a

container runs on a single NUMA node, however, it does
allow limiting to a set of CPU cores with the –cpuset-cpus
option, if the correct CPU core numbers are known. The
Linux scheduler initially allocates memory from the same
NUMA node for these pinned processes. However, if the
memory requirements exceed that available on the node,
another node may be used — we need to keep our memory
usage low enough to avoid this.
Our custom scheduler requires knowledge of which

CPU cores are in each NUMA node. While Mesos does
not provide any mechanisms for interrogating agent hard-
ware, it allows arbitrary key-value attributes to be at-
tached to each agent and made available to the sched-
uler. As part of deploying the agent, we use the lstopo
tool [31] to determine the topology and store it in
an attribute, e.g., katsdpcontroller.numa=[[0, 2, 4,
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6], [1, 3, 5, 7]] for a dual-socket, quad-core node.
Mesos also allows for custom resources: we create a “range”
resource to expose each core as a resource.
NUMA-sensitive tasks reserve a number of cores, and

the scheduler restricts the allocation to be from a single
NUMA node. This solution conflates NUMA awareness
with core affinity, which is not ideal. In practice it works, as
our high-performance tasks are invariably pinned to specific
CPU cores to prevent the additional latency caused by level 1
cache invalidation.

Fractional GPU Allocation
Mesos has basic support for specifying GPUs as resources,

but only in integer increments. The type of GPU, amount of
memory, and the NUMA node is not available. We added
custom resources and attributes with this information, as
well as the ability to allocate fractions of a GPU’s compute
capacity and memory to a task. We also need to access
device paths like /dev/nvidia0 from inside the container.
These are passed in via Docker arguments.

Unlike CPU assignments, our custom mechanism pro-
vides no enforcement of limits between different processes
using the same GPU, so we must be careful not to oversub-
scribe the resources.

Network Interface Card Affinity
As with the CPUs and GPUs, the NUMA node that a

particular network interface card (NIC) is connected to is
important for optimal processing. Our network also has
different segments for data and control, so we must ensure
the selected NIC will have access to the correct segment.

We added custom resources for the input and output band-
widths; and custom attributes like interface name, device
endpoint, network name, NUMA node, and Infiniband capa-
bilities. Similar to the GPU solution, there is no enforcement
of these limits by the operating system.

Multi-stage Launch
While existing orchestration systems often have the con-

cept of a group of tasks that are launched together (e.g.,
“application groups” in Marathon), our requirements are
slightly more complex. Each container provides metadata
about its outputs to downstream consumers. Thus, the con-
tainers in a pipeline need to be started in front-to-back order,
waiting for each one to come up before starting the next one.

While this could be achieved by running the pseudocode
above separately for each container, this can lead to subopti-
mal scheduling decisions, because the first container is run
as soon as we have somewhere that it fits, without consider-
ing the needs of other containers in the pipeline. It can also
lead to a pipeline being half-launched, only to find that there
are insufficient resources left in the cluster to continue.
We solve this problem by waiting until we have enough

resources to launch all the containers, and launch them all
together. However, each container with dependencies runs a
wrapper script. This script makes an HTTP request back to

the scheduler, which replies only when the real work of the
container should begin.

Implementation
The bulk of the MeerKAT telescope is developed using

the Python programming language [32], so we chose this for
our scheduler too. We used the PyMesos package [33] to
simplify interfacing with the Mesos master.
Our master controller, including the scheduler, consists

of approximately 5 k lines of code. Mesos provided the bulk
of the solution, with their 130 k lines.
We use Ansible to deploy the Mesos agents.

As part of this deployment, all the custom re-
sources and attributes are written into configuration
files in the /etc/mesos-slave/resources and
/etc/mesos-slave/attributes directories, acces-
sible to the agents and subsequently advertised to the master.
Where possible, these files are populated by querying the
operating system.

Discussion
While our development was aided by a number of positive

aspects of the tools and approach selected, it was not without
challenges. We discuss both sides of this.

Writing our own scheduler gave us a lot of flexibility that
an off-the-shelf scheduler such as Marathon is unlikely to
provide. For example, describing tasks in Python allowed us
to specify arbitrarily complex placement policies and adapt
the task to the chosen placement (for example, choosing a
Docker image that is pre-tuned for the type of GPU found). It
also made it possible to handle requirements such as NUMA
awareness. However, our scheduler is not fault-tolerant, and
it would require significant further work to achieve the high
availability of a framework like Marathon.
The Mesos project is mature, active and widely used,

and thus includes many developer-friendly features. For
example, Mesos is robust and does proper cleanup of old
containers after framework crashes, which is sure to happen
when developing a new framework. Despite the robustness,
we still managed to crash agents and the master, although
the latter did recover, and the developers are responsive to
bug reports. This has not been an issue in production.

The Mesos HTTP API has wrappers written in many lan-
guages, including Python. The PyMesos package was a big
time saver, but we still had to reinvent the wheel for simple
things like aggregating resource offers from an agent and
iterating over a range resource.

The web-based user interface (UI) is good and helps with
debugging. However, it has no support for custom resources,
so there is no visibility of resources such as the network
bandwidth in use. Another issue is that changing an agent’s
attributes or resources requires a manual recovery step to
discard its check-pointed state. This also means killing all
containers currently running on that agent.

The ability to define custom resources and attributes was
critical to our solution. On the downside, attribute values
are limited to the characters A-Za-z0-9_/.- so our actual
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values must be base64 encoded, and are thus not human
readable. This extra layer of indirection is cumbersome.
Making minor changes to the source code for a Docker

process is tedious — the whole container has to be rebuilt,
pushed to the registry and pulled again. One workaround we
use in development is to look for and automatically apply a
patch file when starting our Docker processes. This is a ben-
efit of using Python — no recompilation of our applications
is required.

FUTURE WORK
There are a number of areas where improvements could be

made. The first is high availability of our master controller
and its custom scheduler. As mentioned earlier, using or
learning from the Marathon framework would be beneficial.
Many of our components are stateful, and significant work is
required to move all the state to a distributed store. Much of
our state is kept in a Redis in-memory data store [34], which
could be changed to a cluster-based implementation, or we
could consider using ZooKeeper. There are also issues with
lost data while switching over to new nodes.

The NUMA memory modelling should be improved, and
we need better isolation of reserved CPU cores, GPUs and
network bandwidth. Many of these issues need to be tackled
in the Docker runtime, or even the Linux kernel level, which
makes this very challenging.
The multi-stage launch scheme is a good candidate for

a custom executor; we chose the current approach because
there does not appear to be an easy way to extend, rather
than replace, the default executor.

CONCLUSION
We have provided a basic overview of the MeerKAT radio

telescope and its Science Data Processor. The history of the
SDP deployment was discussed as was the major motivating
factor for moving from a static deployment process to a
dynamic one. We discussed container orchestration tools
with a focus on Mesos before delving into the details of our
scheduler.
By adding custom resources and attributes to agents we

showed that it is possible to apply Mesos to heterogeneous
NUMA compute clusters and still maintain optimal perfor-
mance. The Docker runtime helps to isolate CPU and mem-
ory resources. Our work on fine-grained allocation of GPU
resources, and awareness of network segments and NIC ca-
pabilities is also beneficial, while not completely supported
by Docker.
Our implementation is effective, but can be improved by

making it more fault tolerant, and thus providing higher
availability. Some of the limitations could only be overcome
by changing the Docker runtime and Linux kernel.
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