
NOMAD 3D: AUGMENTED REALITY IN INSTRUMENT CONTROL

Y. Le Goc*, P. Mutti, F. Cécillon, Institut Laue-Langevin, Grenoble, France
I. Dagès, ENSIMAG, Grenoble, France

Abstract
The life cycle of an ILL instrument has two main

stages. During the design of the instrument, a precise but
static 3D model of the different components is developed.
Then comes the exploitation of the instrument of which
the control by the Nomad software allows scientific
experiments to be performed.

Almost all instruments at the ILL have moveable parts
very often hidden behind radiological protection elements
such as heavy concrete walls or casemate. Massive
elements of the sample environment like magnets and
cryostats must be aligned in the beam. All those devices
have the possibility to collide with the surrounding
environment. To avoid those types of accident, the
instrument moves must be checked by a pre-experiment
simulation that will reveal possible interferences.

Nomad 3D is the application that links the design and
the experiment aspects providing an animated 3D
physical representation of the instrument while it moves.
Collision detection algorithms will protect the moveable
parts from crashes. During an experiment, it will augment
the reality by enabling to “see” behind the walls. It will
provide as well a precise virtual representation of the
instrument during the simulations.

INTRODUCTION
The classical tool for instrument design at the ILL is

SolidWorks [1]. Typically, the projects are realised
internally but they can integrate some components from
external companies. The models at the end may contain
errors, have different configurations showing different
parts of the model in an exclusive way. The models are
very precise — every part of the instrument is designed
including the screws — and can be big. The model
represents the different components with their real
dimensions as the real parts are built from it.

On the other side, Nomad [2], the instrument control
software is providing the full control of the instruments
and the experiments. The axes driven by the motors can
move in parallel on request of the user and Nomad is
monitoring the actual positions of the axes by reading the
encoder position of the motors. A simple movement of
three parts around two axes is shown in Figure 1.

Figure 1: Diagram showing a movement with 2 axes.

The goal of the project is to adapt the SolidWorks
models to 3D models that will be loaded and animated
into a dedicated viewer application. The positions of the
axes are read from Nomad. We do not make any strong
assumption on the client computer requirements so the
viewer application must be scalable and be able to display
big original models. Now we suppose that we are in the
scope of an instrument for which we have a SolidWorks
model and a Nomad configuration. To achieve our goal,
we need to proceed in different steps. First we need to
export the model to clean, correct and simplify it so that it
is small enough to be displayed at a comfortable frame
rate. Then we need to identify and map the axes of the
model to the axes of Nomad, “augmenting” the data of the
model. As Nomad only provides angle or distance values,
a “calibration” phase is then required to position the axis
in the 3D space and set the “zero”. With these
information, we are able to animate the 3D model
precisely with the only actual values of the axis.

Nomad 3D is a cross-disciplinary project that links
Computer-Aided Design (CAD) [3], instrument control
and 3D graphics. The article will navigate through these
different fields.

WORKFLOW
The Nomad 3D project is split into different

applications for which the typical workflow is shown in
Figure 2.

Figure 2: Workflow for an instrument model.

We provide details for each application in the following
sections.

SolidWorks Introduction
Let's begin by a short introduction to CAD and the

SolidWorks data model. SolidWorks and other CAD
software are intended for mechanic's design.

A SolidWorks model is described as a tree hierarchy of
components, each of them saved in a separate file. The
component leaves also called “parts” are the geometries
obtained by a combination of basic 3D geometric shapes -
addition or subtraction of prisms, cylinders, spheres, etc.
The components that are not the leaves, called
“assemblies” are groups of parts or assemblies (called
sub-assemblies in that case). They also describe how the
sub-components are constrained to each other. A
constraint between two components is called a “mate” and
defines the degrees of freedom of the components from a
relative perspective.__

* legoc@ill.eu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL05

THAPL05
1098

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

A SolidWorks model can have several configurations
describing different positions of the moveable
components and their visibility, for which an example is
given in Figure 3.

Figure 3: Model in two configurations having different
positions and visibilities.

Exporter
The first step in our workflow is to obtain a file data

structure adapted to common 3D engines [4], which is
usually called scene graph. Indeed if the component
hierarchy can be directly translated into our structure, the
geometry parts must be converted into a set of triangles.
As we were unable to find an open-source library, we
tried the MathWorks Simscape Multibody Link [5] add-in
which is a SolidWorks plugin to export assemblies to the
Simscape Multibody CAD software. The hierarchy and
geometries were well exported but not the mates and the
configurations. Then we decided to write our own
SolidWorks add-in in C# [6] which has proven to be
successful. The SolidWorks C# API provides full access
to the model data and offers a native function to convert
the geometries into STL [7] files containing a set of
triangles. Finding such a triangulation function was a key
to the success because it was a too difficult task to rewrite
it by ourselves. The API enabled us to save all the
configurations of the model thanks to a good
documentation. Our Nomad 3D add-in has a UI accessible
in SolidWorks once a model is loaded and provides the
desired export functionality. The first step of
simplification of the model geometries is done here by
parameterising the export with a threshold enabling to
eliminate small parts like screws that we do not need in
our final visualisation. When the export is finished, we
have the desired file data structure of which a simplified
data model is shown in Figure 4. Notice that there are
multiple files:

• The main XML file containing the assembly
hierarchy, the configurations, the material and
visibility properties of each component as well as
their mates.

• The STL files containing the geometries of each part.

Figure 4: Simplified Nomad 3D common data model.

Note that the triangulation is a discretisation algorithm
that we parameterise such that geometries are as coarse as
possible, but they are still too detailed for our goal.

Converter
The Converter application is the second step in the

clean-up and simplification [8] of the model. We could
have extended the SolidWorks C# add-in but we preferred
to write it in Java as it was easier to develop. The
Converter takes as input the exported files and writes new
files. The XML file format is a little bit different. The
main difference being that there is no mate group as they
have been converted. The STL files are converted using a
Blender [9] script to perform a clean-up of the geometries
— bad triangle orientation, double vertices, etc. The
Blender script is also used to generate different levels of
details (LODs) [10] for the geometries. In addition to the
cleaned-up exported geometries, we generate the
decimated geometries for which a ratio is provided by the
user (0.5 is the default value) and the convex hull
geometries. These different levels of details will be useful
for the scalability of the viewer application as the number
of triangles is decreasing according to them. An example
of LODs is given in Figures 5 and 6.

Figure 5: A SolidWorks goniometer model and its
exported conversion.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL05

User Interfaces and User eXperience (UX)
THAPL05

1099

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: The decimated and convex hull conversions.

Editor
If the Exporter and the Converter applications reduce

and reorganize data of the model, the Editor application
on the other hand is adding information that cannot be
done automatically.

The main goal of the Editor is to define the axes and the
walls of the model. To do it, we must first find the
connected components that move around axis. For that it
is possible to do some kind of clean-up by reorganizing
the model if its component hierarchy and geometry are
not suitable. The Editor allows to:

• Edit the tree: add, remove, move some components.
• Subdivide some geometries: the operation must be

done in an external tool, e.g., Blender.

The subdivision of geometries can be necessary when
we integrate parts designed by an external company.

Then we can focus on the definition of the axes, that is
essential for the animation of the model with Nomad. The
Editor has different steps to add an axis:

• Define the space properties: an axis is associated to a
component and describes how this component can
move relatively to its parent component. The user
must enter its type — rotation or translation — and
define its 3D position — point and direction.

• Map to Nomad: the user must select an axis from the
list provided by Nomad.

• Calibrate: the definition of the “zero” or “median”
position is necessary to correctly animate the model
according to the Nomad values.

• Optional limits: some limits can be added here but
they are only used for visualisation as Nomad
already have some.

The Editor also provides the necessary identification of
the walls of the models by tagging the wanted
components.

From the user point of view, the Editor written in
JavaFX [11] provides a 3D view of the model and a tree
view of the hierarchy of components. To interact with the
different components, the user can hide or show any
component, i.e. all its children and select them, which is
necessary to access the “deepest” parts of the model. The
selection can be done graphically in the 3D view as well
as in the tree view by selecting items. Once a component

is selected, its associated data can be edited, i.e., the axis,
material and wall properties as shown in Figure 7.

Figure 7: Screenshot of the Editor. The front wall is
selected and appears transparent.

The Editor also provides features to edit the
configurations inherited by the SolidWorks model.
SolidWorks does not constraint the number and the
content of the configurations which offers lots of freedom
to the CAD designer. In our case, our Nomad 3D standard
imposes to have one mandatory configuration called
“median” in which all the axes are in the "median"
position, i.e. the zero value in Nomad, and the
components are visible. This special configuration is
mandatory to correctly animate the model and the user
must edit one existing configuration to achieve this.

Depending on the original SolidWorks model
“qualities”, the operations in the Editor to generate a
standard Nomad 3D model for the viewer are not trivial
and may take time.

Viewer
We rapidly decided to choose Three.js [12] as frontend

for rendering and animating our Nomad 3D models.
Three.js is a 3D engine based on WebGL [13] –
implementation of OpenGL ES [14] in JavaScript [15] -
which offers the current best compromise between
performance and portability. Three.js also has a nice API
and lots of functionalities including a performant
management of the LODs: it selects automatically the
appropriate LOD for a given geometry or part depending
on its distance from the point of view as shown in
Figure 8. A “view distance” parameter controls how close
from the point of view the different LODs are selected.
The more the distance is small, the more the displayed
geometry will be coarse. Our Nomad 3D model has been
designed to be easily loadable, rendered and animated in
Three.js. The resulting code is simple and easy to extend.

The user can change some display options: the opacity
of the walls, the material reflection and the dynamic
shadows can be tuned depending on the performance of
the client computer and adapted to a comfortable
framerate. As backend we use Node.js [16] for which a
V8 C++ addon has been written to communicate with
Nomad. The Viewer is requesting to Nomad the positions
of the axes at each frame enabling a real-time animation
of the model.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL05

THAPL05
1100

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Figure 8: Screenshot of the Viewer showing the LODs
depending on the distance from the point of view.

Now we have developed a cross-platform Electron [17]
application, which is a desktop application (Electron
embeds Chromium and Node.js without any remote
requests). The choice of Three.js offers a lot of flexibility
that will enable us to share the client code for further web,
tablet applications.

RESULTS
We tested the Nomad 3D workflow on the model of the

vertical Time-of-Flight reflectometer Figaro for which the
SolidWorks model has a size of 1.1 G on disk. The
conversion to the Nomad 3D model resulted in a size of
103M on disk. The triangle count of the different LODs is
given in Table 1 and an overview of the model in Figures
9 and 10.

Table 1: The Level of Details of the Figaro Model

Level of details Triangle count

Cleaned 13 769 502

Decimated 6 887 424

Convex hulls 399 414

Figure 9: Overview of the Figaro instrument in
SolidWorks.

Figure 10: Overview of the Figaro instrument in the
Viewer.

We developed successfully the Viewer application that
enables us to animate the model in real-time by Nomad
and see behind the walls. Some demonstration videos of
the Figaro instrument are available on the Nomad 3D web
site [18]. We obtained a 30fps frame rate on a desktop PC
(dual core Intel i5 3.3GHz, Nvidia GT218 512M) for the
Figaro model. However at the time we write, the collision
detection and the set-up of external devices like cryostats
is still ongoing.

The commissioning phase of Nomad 3D on Figaro is
now completed and we are working to extend the
application to other instruments and to get some feedback
from the users.

FUTURE DEVELOPMENTS
Currently on some instruments of the ILL, we use a

rough mechanism to check the potential collisions before
moving the parts for real: we only check the final
positions of the movement. We want to replace this with a
more precise simulation of the movement which takes
into account the full trajectory.

The implementation of the collision detection [19] will
be soon implemented in Nomad 3D and will allow to
solve this: we have to check if wall geometries collide
with non-wall geometries during the movement. However
this is not a so trivial task as different strategies may be
adopted depending on the level of precision we want to
reach and the computer resources we have.

Some new clients will also be developed: a web
application for the ubiquity and a tablet application for a
better user interaction.

These are the incoming developments but some others
will follow as the Nomad 3D concept opens new
perspectives.

CONCLUSION
We achieved our goal to develop tools to “see” behind

the walls of the instruments without any webcam
providing the first step to the Augmented Reality at the
ILL.

Concretely we can take an ILL SolidWorks model of an
instrument, adapt it to a standard Nomad 3D model
without any modification in SolidWorks and animate it in
a simple viewer. We developed successfully the Exporter,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL05

User Interfaces and User eXperience (UX)
THAPL05

1101

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Converter, Editor and Viewer applications. We needed to
add some functionalities to the Editor as we were
“exploring” the full Figaro instrument's model. We surely
will need to add some new functionalities to cover all the
ILL moving instruments for which a SolidWorks model
exists, but definitely the way is open to the next
generation of instrument control where the user
experience is at the heart. Nomad 3D mixes mechanics,
CAD, 3D graphics and shows that cross-disciplinary
projects are the future of instrument control. Better
instrument simulation with the online collision detection
will allow to optimise the space and by consequence
measures. Last but not least, the integration of Virtual
Reality devices such as Oculus Rift for a complete
immersion will come up soon.

REFERENCES
[1] SolidWorks, http://www.solidworks.com/

[2] Nomad, P. Mutti et al., “NOMAD - More than a simple
sequencer’’, in Proc. ICALEPCS’11, Grenoble, France,
Oct. 2011, pp. 808-811.

[3] CAD: Handbook of Computer Aided Geometric Design,
Gerald Farin, Josef Hoschek, Myung-Soo Kim, Josef
Hoschek and Myung-Soo Kim, ISBN: 978-0-444-51104-1

[4] 3D Graphics Introduction,
https://www.gamedev.net/articles/
programming/graphics/the-total-beginners-
guide-to-3d-graphics-theory-r3402/

[5] MathWorks Simscape Multibody Link,
https://fr.mathworks.com/help/physmod/
smlink/index.html

[6] C#, https://docs.microsoft.com/en-us/dotnet/
csharp/programming-guide/index/

[7] STL format,
https://all3dp.com/what-is-stl-file-format-
extension-3d-printing/

[8] 3D mesh simplification,
https://software.intel.com/en-us/articles/3d
-modeling-and-parallel-mesh-simplification/

[9] Blender, https://www.blender.org/

[10] LOD, http://computer-graphics.se/TSBK07-files
/pdf/PDF09/10%20LOD.pdf

[11] JavaFX, https://docs.oracle.com/javase/8/
javase-clienttechnologies.htm/

[12] Three.js, https://threejs.org/

[13] WebGL, https://www.khronos.org/webgl/

[14] OpenGL ES, https://www.khronos.org/opengles/

[15] JavaScript, https://javascript.info/

[16] Node.js, https://nodejs.org/

[17] Electron, https://electron.atom.io/

[18] Nomad 3D,
http://docs.sites.code.ill.fr/nomad-3d/

[19] Collision Detection,
https://developer.mozilla.org/en-US/docs/
Games/Techniques/3D_collision_detection/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL05

THAPL05
1102

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

