
PYTHON FOR USER INTERFACES AT SIRIUS

Abstract
Sirius is the new Brazilian Synchrotron and will be fin-

ished in 2018. Based on experiences at LNLS UVX light
source along with researches and implementations, we
present our new approach to develop user interfaces for beam-
lines control. On this process, the main tools explored are
Python, Qt and some Python libraries: PyQt, PyDM and
Py4syn. Powerful resources of these modules and Python
straightforward coding guarantee flexible user interfaces: it
is possible to combine graphical applications with intelli-
gent control procedures. At UVX, EPICS and Python are
software tools already used respectively for distributed con-
trol system and control routines. These routines often use
Py4Syn, a library which provides high-level abstraction for
devices manipulation. All these features will continue at
Sirius. More recently PyQt turned out to be a compatible
and intuitive tool to build GUI applications, binding Qt to
Python. Also PyDM offers a practical framework to expose
EPICS variables to PyQt. The result is a set of graphical and
control libraries to support new user interfaces for Sirius
beamlines.

INTRODUCTION
The Brazilian Synchrotron Light Laboratory (LNLS)

started in 1997, building UVX, the first synchrotron light
source of South Hemisphere. Today, UVX has 16 beamlines
opened for user community. Since its foundation, control
software used on UVX beamlines evolved in many ways.
Starting with in-house software, EPICS [1] was adopted
in 2011 and at the moment our control software solution
is mostly based on it. EPICS led to a standard method of
accessing different devices. However, other needs emerged
at the beamlines regarding data acquisition, such as user-
friendly monitoring and control as well as integration with
complex experiment routines. In order to address these re-
quirements, LNLS started to research more efficient user
interfaces.

At the beginning control procedures at UVX were mostly
based on direct access to EPICS PVs (process variables), us-
ing commands such as caget and caput. Then, many different
ways of providing simple but powerful user interface were
experimented. Chosen tools include frameworks written in
C, Java and Python, and currently the most used ones are
CS-Studio [2] and Python scripts that include Py4Syn [3,4],
library for high-level operations at synchrotrons.

All this experience resulted in good guidelines for what
will be selected for Sirius, the new Brazilian synchrotron
LNLS is currently working on.

Sirius promises to be one of the most brilliant synchrotron
light sources, planned to achieve higher energy and much
lower emittance than UVX, with initially 13 beamlines and
40 ones as the final objective. This new synchrotron facility
will allow experiments that are not possible today at the
current Brazilian light source. The first electron beam is
planned for 2018 and the early experiments at beamlines are
expected in the course of 2019.
Constructing a new laboratory brings a lot of innovation

challenges to all fields related to its project and on control
user interface it is not different. Each beamline at Sirius
will have different types of devices and they will be more
numerous than they are at UVX. Also, different types of ex-
periments will be available per beamline. For robust control
of all equipment and experiments, we pursued a framework
for intuitive and flexible user interfaces, not only for the end
user but also regarding development.
On this process, experiences at UVX in the last years

are highly valuable while defining what will be prepared
for Sirius. Based on them, we summarize challenges and
proposed solutions for user interfaces at Sirius.

CONTROL INTERFACES AT UVX
Providing a control interface for a beamline is not a simple

task. Normally, there are many different equipment from
different manufacturers and with particular software.
At UVX, since we started using EPICS this problem be-

came simpler. EPICS brings a common interface to com-
municate with several devices, organizing and accessing
their properties by creating process variables (PVs) through
an IOC (Input/Output Controller). But EPICS doesn’t pro-
vide a graphical user interface, but something closer to a
middleware interface. Besides that, we chose to let on IOC
just low-level code, that is, we didn’t insert in IOC complex
operation like a motor scan.
On LNLS user interfaces is grouped in two main

groups: Simple Read/Write PVs and Experiments. Simple
Read/Write PVs are usually used for tasks such as moving
a motor, updating parameters of a picoamperimeter, moni-
toring values from a detector. All these tasks are resumed
to read and write values from/to process variables. Experi-
ments are tasks a bit more complex and involve working with
different hardware together with performing a set of actions
related to PVs. An example is a motor scan, a task where
a motor is moved while a detector is read. On motor scan,
a motor is moved only if detector has finished acquisition.
These experiments are built as Python scripts and could be

G. S. Fedel†, D. B. Beniz‡, L. P. Carmo§, J. R. Piton#
Laboratório Nacional de Luz Síncrotron, Campinas, Brazil

† gabriel.fedel@lnls.br
‡ douglas.beniz@lnls.br
§ lais.carmo@lnls.br
james@lnls.br

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

User Interfaces and User eXperience (UX)
THAPL04

1091

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

controlled and monitored by command line or by using a
graphical user interface.
Today, at UVX, different technologies are employed to

provide user interface and control. Some of them are the C
framework MEDM [5] and C-like SPEC [6] macros. There
are also tools based on Java such as Labweb [7] and CS-
Studio. Python is used as well for command-line scripts
that include Py4Syn, or for building GUI applications with
libraries suhc as Tkinter [8]. But among all these technolo-
gies the most used are both CS-Studio and command line.
They are discussed in next session.

CS Studio
The most used graphical user interface tool today at UVX

is Control System Studio (CS Studio). This framework is
built with JAVA and provides tools for monitoring and con-
trolling large-scale systems, being compatible with EPICS
process variables. Operation interfaces (OPI) can be com-
posed with its graphical tool called BOY (Best OPI Yet).
Some advantages of CS Studio are:
• Open source: This allows modifications on CS Studio,
adapting it for different uses;

• Integration with EPICS: CS Studio has native inte-
gration with EPICS;

• Simple installation: The installation process is very
simple, with plenty of ready-to-use resources;

• Good usability: Like in Eclipse IDE, in CS Stu-
dio graphical interfaces can be built by dragging-and-
dropping widgets;

• Scripts insertion: Besides widgets, it is possible to
insert scripts (in Python or JavaScript) for customize
an object behavior. Objects can also be controlled by
other supplied mechanisms, which are the configuring
of actions and rules.

In spite of these advantages, CS Studio has some lim-
itations. Some of them occur because of features of our
development environment:

• Integration with Python: Python is used on differ-
ent levels and sometimes CS Studio integration is very
limited for complex operations. Also Python scripts
inserted into CS Studio must rely only on libraries avail-
able from Jython interpreter (Python implementation
integrated with Java). Not all Pythonmodules are acces-
sible through Jython and calling system-wide Python
libraries requires additional implementation.

• Complex scripts degraded performance at CS Stu-
dio: CS Studio is more fitted for tasks related with
direct PV reading and writing. The addition of com-
plex scripts in CS Studio consumes a lot of machine
resources;

• Hard to Modify Source Code: Despite CS Studio be-
ing open source, changing its source code is not simple.
In many cases a lot of workarounds has to be done to
achieve a complex behavior.

• Control logic and visualization are together: In CS
Studio personalized control can be done though actions,
rules and scripts, which may be applied to a given ob-

ject. Although these features are user-friendly, they can
make the resulting application difficult to understand
and bugs hard to track, once the control logic becomes
fragmented and merged to the graphical portion.

• Too much resources High demands of RAM and CPU
resources are faced in CS Studio at UVX, specially
when it comes to operation interfaces containing nu-
merous process variables being monitored and/or em-
bedded Python routines. This often leads in undesired
situations like frozen screens, damaging user experi-
ence.

These limitations was the motivation to find alternatives
for graphical user interfaces that could better match our
environment, considering all peculiarities and technologies
within it.

Command Line
Command line are still used at UVX due to two major

reasons: legacy from other technologies and possibility
to construct more complex experiments. The first reason
comes from scientists experience with other technologies
like SPEC, that are completely controlled by command line.
The second one is the facility that command line permits
while combining commands in a simple way and building
more complex experiments. Command line is broadly used
by other synchrotrons and this contributes to legacy use on
UVX.
At UVX command line programs are built by using

Python and some libraries, e.g, PyEpics [9]. To simplify
and standardize development process some new libraries
were build, e.g., Py4Syn, which combines a lot of common
methods used in synchrotron experiments. Py4Syn provides
mnemonic commands that are intuitive or even familiar to
the users, commands like scan, tscan and others.

These scripts could be used on command line, but some-
times they are integrated into a graphical interface built with
CS Studio.

Alternatives
Limitations found while using CS Studio wast the motiva-

tion to look for alternatives tools for graphical user interfaces.
Moreover, more efficient ways of combining user interfaces
with control procedures were searched. The main objective
was to find tools that better fit our environment, resolving
current challenges and preserving features that are already
good.

Challenges that needed to be solved are better integrating
graphical user interface with Python routines, separating
control logic and graphic components for more organization
and code reuse,and better management of computational
resources. Features to preserve are user interfaces integrated
to EPICS, with easy installation and intuitive usability.
Another key feature is maintaining both command line

and graphical interface as means of user input. However, it is
important not only to maintain them available, but improve
their communication with control logic. A good scenario

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

THAPL04
1092

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

would be having a control routine possible to be reused, by
being called by either command line or graphical interface.

When it comes to alternatives for graphical user interfaces,
different GUI software were tried, mainly inspecting those
currently used by other synchrotron laboratories. Interesting
solutions where found in tools that combine Python and
Qt [10] framework, such as PyQt [11]. At the beginning,
very simple screens for monitoring and controlling PVs were
created and latter a few simple beamline GUIs implemented
with CS Studio were selected and remade with PyQt. On
this process, the need of a framework for linking GUI to
channel access emerged and, at this moment, PyDM [12,13]
library turned out to be very helpful. PyQt and PyDM are
detailed in the following section.
Regarding communication between user interfaces and

control logic, experiments with parallelism were made, ex-
ploring thread-based and process-based approaches. On
the last one, the most interesting option was D-Bus, a well-
established protocol in Unix and Linux environment for Inter-
process Communication (IPC), which is better explained in
the next section.

SELECTED TOOLS
Building a new approach for user interfaces requires a set

of tools that allows functionality similar to already tools in
use (such as CS-Studio). Almost all chosen tools are based
on Python and under Open Source license.
The combination of these tools on synchrotron is a con-

tribution of this work.

PyQt
PyQt is a Python library which provides bindings for C++

Qt cross-plataform application framework. It is currently
developed by Riverbanking Computing and works with both
Python version 2 and 3, supporting Qt version 4 (PyQt4) and
5 (PyQt5). PyQt is available under GNU GPL version 3 and
Riverbank commercial license for all supported platforms.
Qt framework is widely employed in application devel-

opment for desktop environment. It is mainly used as a
GUI tool, known by its rich collection of graphical objects
(widgets). However it also offers other resources as threads,
network sockets and D-Bus [14] implementation. One of
the main features of Qt is the signal/slot mechanism which
allows communication between objects, making application
development very intuitive. Qt also offers Qt Designer, a
graphical environment for creating graphical applications
without coding, by simply drag-and-dropping widgets. Cus-
tomized widgets and controls can be easily created by deriv-
ing Qt classes and extensions can be loaded into Designer
by its plugin mechanism. User interface (UI) files created
inside Designer are described by XML code which can be
latter translated to other programming languages.
The main advantage of PyQt is combining the powerful

resources from Qt framework with the simplicity of Python
interpreted programming language. The tool used for bind-
ing Qt to Python is SIP [15] which encapsulates C++ Qt

libraries. PyQt in organized in Python modules and makes
available more than one thousand classes. A Python plugin
is included so extensions for Qt Designer can be written
in Python. PyQt can convert Designer UI files to Python,
making them possible to be integrated to Python applica-
tions. PyQt, as well as Qt and Python, has currently a large
documentation and community support.
Python and Qt are flexible frameworks that fit in general

purpose. They find place in a wide range of contexts, both
meeting frequent application in scientific experiments for
control and monitoring [16–18]. PyQt already can be found
at several synchrotron laboratories [16, 19, 20]. Examples
of applications based on PyQt currently in use at LNLS and
in other synchrotron facilities also include PyMca1 [21] ,
Orange2 [22] , MXCube3 [23, 24] and PyQtGraph4 [25] .

PyDM
PyDM is a practical framework based on PyQt for building

graphical user interfaces for control systems. Its develop-
ment started at SLAC. PyDM combines PyQt resources to
build a simple way to connect graphical objects to a channel
access. Different channel access are admitted, e.g, EPICS
which is reached by PyEpics library. A set of widgets is
included and can be used as Designer plugins for easily de-
signing screens. Also a graphical application is available for
quickly loading UI files. In addition, its simple API makes
possible to build extensions and complex applications.

QtDBus
D-Bus is a system bus which allows applications to com-

municate by messages on UNIX and Linux. It is not only
useful for inter-process communication, but also for man-
aging process lifecycle such as launching an application or
daemon and terminating them when needed. High level
bindings for D-Bus are found written in various program-
ming languages such as C#, Java and Python. Qt has its own
implementation of D-Bus, the module QtDBus, which is
also part of PyQt.

For usingD-Bus, a process has to connect to amessage bus
daemon. A bus daemon can be seen as a router, forwarding
messages from an application to another. Once connected to
the bus daemon, a process may expose its objects, making
possible to other process to access members of an object,
such as methods and signals. D-Bus process communication
through messages also applies for the case when applications
are running on different machines.
QtDBus available in PyQt provides a very intuitive in-

terface to work with D-Bus resources. It also extends the
signals and slots mechanism, then a local signal can be con-
nected to a remote slot as well as a local slot can be triggered
by a signal remotely emitted.

1 X-ray Fluorescence toolkit
2 Machine learning and data visualization toolbox
3 Environment for macromolecular crystallography beamlines
4 Pure-python GUI library for fast display in scientific applications

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

User Interfaces and User eXperience (UX)
THAPL04

1093

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONTROL INTERFACES AT SIRIUS

Considering experience with user interfaces at UVX and
studies about alternatives, a new, standardized method to
build user interfaces for Sirius was developed. For this new
approach, technologies were selected to form the basis of a
framework.
Two different types of user interfaces are still adopted:

graphical and command line. The command line interface
will not have great changes on how user interacts with it.
Back-end code, however, was modified in a way that its
structure can be called by graphical interface or command
line.

A Framework for User Interfaces at Sirius

For Sirius a framework for user interfaces was defined,
which introduces how user interface is implemented, as well
as how it is connected to lower-level elements. The frame-
work can be applied in two different ways as presented in
Figures 1 and 2.
In Figure 1 the simplest case, in which interface it is

connected directly to EPICS by using PyDM library, is show.
In this case, it is possible to build user interfaces by using just
QtDesigner and PyDM. An example of such user interface
is one for simple motor control as shown in Figure 3.
In Figure 2 the experiment case is presented. This sce-

nario covers experiments such as motor scans. An experi-
ment server contains experiment control logic and it can be
accessed either by graphical interface or command line. In
this case a client/server model is used, where user interface
is a client for experiment server, while the latter commu-
nicates with EPICS. The experiment server reuses a lot of
pre-existing code from UVX repository.

Pre-existing code, which was mostly written sequentially,
was re-factored to match object orientation, being reorga-
nized into classes. This way, that code became easier to be
incorporated within our new approach. At experiment server
third-party libraries are included, PyEpics and Py4syn, for
instance.
An important feature of this framework also shown in

Figure 2 is the communication between user interface and
experiment server. These applications exchange messages
through QtDBus. Thus, the experiment can notify user in-
terface about its current state. Then user interface can be
updated accordingly so the end user can be aware of experi-
ment course. Likewise, user interface may send commands
to the server, triggering experiment tasks.
A relevant aspect of this framework is that most of its

pieces could be replaced by other implementations with
low effort. For example, it is not hard to replace PyQt by
another GUI library (e.g. PySide or Tkinter). This makes our
framework flexible and not bound to a specific technology.

In this paper lower-level framework (from EPICS to equip-
ment) is not presented, but this is described in details on [26].

Figure 1: Framework for direct access to EPICS PVs.

Figure 2: Framework for Experiments.

Screen Previews
Here a few screenshots of GUIs are shown, some in use

and others for future use. These screens come from appli-
cations at beamlines and have been developed by LNLS
software control group. The technologies presented on this
work (like PyDM and PyQt) are being used in other areas for
Sirius such as the accelerator physics group (for monitoring
accelerators) and the power electronics group (for equipment
tests).

In Figure 3 a simple motor control interface is presented.
This interface is assembled with PyQt with PyDM plugins,
connecting it to motor PVs, which follows the model shown
in Figure 1. As motor operation is a very frequent task, this
interface is thought to be a plugin widget for Qt Designer,
in a way it can be easily reused by various screens.
In Figure 4 a scan motors interface is shown. This inter-

face is used to perform a scan using an arbitrary number
of motors and counters (e.g. scalers). This interface fits in

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

THAPL04
1094

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Figure 3: Simple motor interface.

the framework structure described by Figure 2, given that
there is an experiment server which performs scan based on
parameters set on the the interface. The Counter Set option
allows users to retrieve sets of counters for configuring a
specific experiment.
In Figure 5 an interface for Ocean Optics Spectrometers

is presented, using David Beauregard’s IOC [27]. This in-
terface is a hybrid case between framework on Figure 1 and
2. Nearly all of the interface was built using PyDM widgets,
while the right lower area was customized for a simple "time
scan", performing an acquisition series and saving the result.
This part was implemented by using an experiment server
and simple PyQt components.
Figure 6 shows a interface for baking procedures. This

interface was built using PyDM widgets only, with routines
added just for simple customization of graphical behavior.
The controls on this screen allow that temperature curves
are set by user. Also multiple temperatures sensors can be
monitored in a single time plotting widget from PyDM. This
widget is derived from PyQtGraph library and some of its
features, such as the possibility of drawing multiple curves
together, were implemented with LNLS participation.

Next Steps
The development of user interfaces for Sirius is still in

progress, thus some topics are open and will be defined soon.
Some of them are listed below:

• Standardize common windows: Many devices and
processes are common at almost all beamlines. Some
examples of usual operations are motor control and con-
figuration, slit control and motor scans. For these cases,
standard interfaces have been developed to be available
for all beamlines. Besides common functionality, it is
intended to set design guidelines, defining style param-
eters such as color schemes and fonts. This features
will give the beamline scientists a more comfortable

user experience since all of them will have their GUI
with similar operation and appearance.

• Access Control: Implementing access control in user
interfaces, providing different views for each level ac-
cess (e.g. administrator, final user).

• Web access: The proposed framework probably could
be used for web access without extensive changes. In
this case, it would be necessary to define and implement
other layers for web interface. Web user interface was
experienced with Labweb, but all the code come from
a different resource, what generates duplicate effort for
maintenance.

CONCLUSION
On this work a framework for user interfaces was de-

scribed, based mostly in Python, which led to fast develop-
ing and deployment and easy integrating to other parts of a
beamline system. The result was functional controls with
simplicity at the same time. Code reusing and open-source
solutions were also important aspects on this process. The
initial results using this model, with PyQt and PyDM, are
very promising and are already they are being used at some
beamlines on UVX. All the work presented here will be used
at Sirius, the new Brazilian synchrotron light source.

REFERENCES
[1] EPICS, http://www.aps.anl.gov/epics/.
[2] C. Studio, http://controlsystemstudio.org/.
[3] H. Slepicka, H. Canova, D. Beniz, and J. Piton, “Py4syn:

Python for synchrotrons,” Journal of synchrotron radiation,
vol. 22, no. 5, pp. 1182–1189, 2015.

[4] Py4Syn, http://py4syn.lnls.br/.
[5] MEDM, http://www.aps.anl.gov/epics/

extensions/medm/.
[6] SPEC, https://certif.com/spec.html.
[7] H. Slepicka, M. Barbosa, D. Omitto, R. Bongers, M. Car-

doso, J. Polli, D. De, J. Oliveira, C. Rodella, H. Canova
et al., “Labweb–lnls beamlines remote operation sys-
tem,” TUPPC037, Proc. ICALEPCS, p. 638, 2013.
[Online]. Available: http://accelconf.web.cern.ch/
AccelConf/ICALEPCS2013/papers/tuppc037.pdf

[8] D. B. Beniz and A. M. Espindola, “Using tkinter
of python to create graphical user interface (gui) for
scripts in lnls,” Proceedings of PCAPAC, Campinas,
SP, BRAZIL, p. 1, 2016. [Online]. Available: http:
//vrws.de/pcapac2016/papers/wepoprpo25.pdf

[9] PyEpics, http://cars9.uchicago.edu/software/
python/pyepics3/.

[10] Qt, https://www.qt.io/.
[11] PyQt, https://riverbankcomputing.com/software/

pyqt/intro.
[12] PyDM, https://github.com/slaclab/pydm/.
[13] T. Rendahl, “Pydm: a python alternative to edm,”

2016, ePICS Collaboration Meeting. [Online]. Available:
http://conference.sns.gov/event/11/session/1/
contribution/45/attachments/131/345/PYDM_.pdf

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

User Interfaces and User eXperience (UX)
THAPL04

1095

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 4: Scan Motors Interface.

Figure 5: Ocean Optics Spectrometer Interface.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

THAPL04
1096

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Figure 6: Baking Interface.

[14] D-Bus, https://www.freedesktop.org/wiki/
Software/dbus/.

[15] SIP-Documentation, http://pyqt.sourceforge.net/
Docs/sip4/.

[16] M. G. Abbott, T. M. Cobb, I. J. Gillingham, and M. T.
Heron, “Diverse uses of python at diamond,” Proceedings
of PCaPAC08, Ljubljana, Slovenia, pp. 137–139, 2008.
[Online]. Available: http://accelconf.web.cern.ch/
accelconf/pc08/papers/tup024.pdf

[17] R. E. Mayssat, “Collaborative development of the epicsqt
framework,” Lyncean Technologies, Inc., WU Vienna
University of Economics and Business, Vienna, Tech. Rep.
DE-SC0011283, Novembro 2014. [Online]. Available: http:
//www.osti.gov/scitech/servlets/purl/1212894/

[18] A. Mezger and H. Brands, “Caqtdm: an epics display
manager based on qt,” Proceedings of ICALEPCS2013, San
Francisco, CA, USA, pp. 864–866, 2013. [Online]. Avail-
able: http://accelconf.web.cern.ch/AccelConf/
ICALEPCS2013/papers/tuppc121.pdf

[19] J. Lidón-Simón, V. Hardion, A. Persson, M. Lindberg,
A. M. Otero, and D. S. Jerzy Jamroz, “Status of
the max iv laboratory control system,” Proceedings of
ICALEPCS2013, San Francisco, CA, USA, pp. 366–369,
2013. [Online]. Available: http://accelconf.web.cern.
ch/AccelConf/ICALEPCS2013/papers/moppc109.pdf

[20] C. Pascual-Izarra, G. Cuní, C. Falcón-Torres, D. Fernández-
Carreiras, Z. Reszela, and M. Rosanes, “Effortless creation of
control & data acquisition graphical user interface with tau-
rus,” Proceedings of ICALEPCS2015, Melbourne, Australia,
pp. 1–4, 2015. [Online]. Available: http://icalepcs.
synchrotron.org.au/papers/thhc3o03.pdf

[21] PyMca, http://pymca.sourceforge.net/.

[22] Orange, https://orange.biolab.si/.

[23] MXCube, http://mxcube.github.io/mxcube/.

[24] D. B. Beniz, “Customization of mxcube 2 (qt4) using epics
for a brazilian synchrotron beamline,” presented at the 16th
International Conference on Accelerator and Large Experi-
mental Control Systems (ICALEPCS2017), Barcelona, Spain,
Oct. 2017, paper THPHA201, this conference.

[25] PyQtGraph, http://www.pyqtgraph.org/.

[26] M. A. L. Moraes, H. D. Almeida, R. M. Caliari, R. R. Ger-
aldes, G. B. Z. L. Moreno, J. R. Piton, and L. Sanfelici, “A
control architecture proposal for sirius beamlines,” presented
at the 16th International Conference on Accelerator and Large
Experimental Control Systems (ICALEPCS2017), Barcelona,
Spain, Oct. 2017, paper THPHA215, this conference.

[27] D. Beauregard. Ocean optics spectrometer ioc.
http://exshare.lightsource.ca/OpenSource/
Software/Forms/AllItems.aspx.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL04

User Interfaces and User eXperience (UX)
THAPL04

1097

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

