
The FERMI@Elettra distributed real-time
framework

L. Pivetta, G. Gaio, R. Passuello, G. Scalamera

lorenzo.pivetta@elettra.trieste.it

Sincrotrone Trieste, Trieste, Italy

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 1/19



Outline

Definition of a real-time system

Some considerations on PC architecture and Operating Systems

Performance tuning and tricks

Real-time subsystem: Adeos/Xenomai

Real-time performance figures

Hardware

Network Reflective Memory

Use cases

Conclusions

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 2/19



Real-time system

A system is said to be real-time if the total correctness of an
operation depends not only upon its logical correctness, but also
upon the time in which it is performed.

hard : missing a deadline is a total system failure

firm : infrequent deadline misses are tolerable but the result is
usless after deadline

soft : the usefulness of a result degrades after deadline

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 3/19



PC architecture & OS

Considerations on PC architecture and GNU/Linux; some features
have strong influence on the real-time behaviour:

system architecture
multiple bridges
microprocessor cache

GNU/Linux
general purpose OS privileges throughput over
responsiveness
not suitable to predict precisely the execution of a task

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 4/19



Performance tuning

Methods to improve the OS performance:

increase the scheduling priority via the nice command

change the scheduling policy programmatically
sched.sched_priority = \

sched_get_priority_max(SCHED_RR)-1;
sched_set_scheduler(0, SCHED_FIFO, &sched);

reserve a CPU core to a task via the taskset command

avoid process memory pages to be swapped via the mlockall
system call

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 5/19



Preemptible kernel

A fully preemptible kernel, based on the PREEMPT_RT patch, allows to:

reduce the kernel code protected by big locks

implement the priority inheritance mechanism for in-kernel
spinlocks and semaphores

introduce the deferred operations

enable the support for High Resolution Timers → periodic tasks

Pros: native API, existing device drivers.
Cons: no hard real-time behaviour guaranteed.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 6/19



Interrupt Service Routine

The ISR has the highest pirority in the GNU/Linux kernel. It can’t be
scheduled and preempts other tasks.
To maximaze the responsiveness some application code could be
inserted into an ISR. Good candidates are:

data availabile IRQ : when data is ready an interrupt is rised

timer IRQ : e.g. for periodic tasks

Tune IRQ affinity to minimize CPU cache side effects; e.g. reserve a
core to one IRQ. Es. IRQ 25 served by core 0:

echo 0x1 > /proc/irq/25/smp_affinity

Pros: fast & responsive
Cons: kernel space development, no floatin point, tight constraints on
task duration

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 7/19



Real-time subsystem

Adeos/Xenomai is a real-time framework cooperating with the Linux
kernel to provide a pervasive hard real-time support to kernel and user
space applications.

Several processor architecture support: ARM, Blackfin, NiosII,
PowerPC, x86...

Complete set of API to develop real-time applications in both
kernel and user space (IPC, synchronization, ...)

Concept: Xenomai handles all incoming IRQs before the Linux kernel;
every IRQ could be managed by Xenomai and/or forwarded to Linux.

Pros: complete set of API to develop real-time applications in both
kernel and user space (IPC, synchronization, maiboxes, ...)
Cons: kernel patch; no standard linux system calls in real-time
applications; drivers to be adapted

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 8/19



Real-time performance

A pulse, referred below as input pulse, produced by a signal generator is
acquired by a digital input board which rises an interrupt on the VME bus.
The IRQ is managed by the ISR and a digital output line driven producing an
output pulse. A digital oscilloscope, triggered on the input pulse measures
the latency of the output pulse.
System loaded with ping flood, heavy network activity, high-speed serial I/O.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 9/19



Running in the ISR

The code driving the digital output line is inserted into the ISR of the
digital input board.

Both Linux kernel and Xenomai perform well with a small advantage for
the latter.

The worst case latency decreases when running at higher frequency
because the probability of generating a cache miss decreases.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 10/19



Running in a task

The code driving the digital output line is a Xenomai real-time task or a Linux
task respectively. In both cases the task is pending on a ioctl call which
waits on a semaphore. The ISR releases the semaphore and the unlocked
task produces the output pulse.

Xenomai task → real-time performance in user space!

Linux task: outstanding performance without load but no guarantee to
meet the deadlines when heavy loaded.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 11/19



Latency measurements

Data sets are composed by few hundred thousand to several million samples
depending on repetition rate. Latency distributions.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 12/19



Real-time test results

The Adeos/Xenomai real-time framework is reliable and
performant

Tasks with a repetition rate of more than 10KHz are feasible

The jitter clearly depends on the task code: e.g. memory access,
peripheral access through bridges, ...

Best real-time performances when text and data segments could
be kept in cache

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 13/19



Hardware

Two platforms are currently used as front end computers for real-time
tasks at the FERMI@Elettra:

Emerson MVME7100 PowerPC VME SBC: 1.3 GHz dual core
MPC8641D, 2GB DDR2 ECC RAM, 8 GB soldered flash disk, 4
Gigabit Ethernet ports, 5 RS232 serial lines, 4 high resolution
timers.
→ control system real-time platform.

Intel based 1U processing servers: two QuadCore 3.0 GHz Xeon
processors, 4 to 16 GB DDR3 RAM, up to 6 Gigabit Ethernet
ports.
→ CCD image processing front-end.

COTS Gigabit/10Gigabit high performance switched Ethernet
network

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 14/19



NRM

A software infrastructure called Network Reflective Memory has been
developed to share data between computers in real-time.

Each real-time computer is reached by a dedicated Gigabit Ethernet
network → restrained traffic

Star shaped topology with the master station at the centre

Customized device drivers for Gianfar and PRO/1000 chipsets

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 15/19



Principle of operation

A master system collects all the messages coming from each
slave and broadcasts them to all stations

The master broadcast is used as NRM trigger:
Upon reception each slave updates its local copy of the NRM
with the data belonging to the master packet
At the same time starts sending new local data to the master

All the data synchronization is handled by Xenomai in real-time

The customized Ethernet device driver allows raw access to the
ISR and the transmission routines

Two FIFO queues serve the writing requests coming from kernel
space (NRM driver) and user space (application)

To safeguard the bandwidth shared among stations the maximum
packet size is fixed to 256 bytes for the slaves and up to 1MB for
the master

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 16/19



Use cases

Several devices are currently interfaced shot by shot:

Electron/photon beam diagnostics : electron beam position
monitors (BPM), photon beam position monitors (PHPBM),
current monitors (CM), CCDs, bunch lenght monitors (BLM),
beam arrival monitors (BAM), laser power meters, i0 monitors
(photon counters), experimental station detectors.

Power supplies : corrector power supplies, quadrupole power
supplies.

Radio frequency systems : linac low level RF.

Machine protection systems : Cherenkov optic fibers, ionization
chambers.

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 17/19



Conclusions

The Adeos/Xenomai real-time subsystem has been adopted to
achieve hard real-time performances on front-end computers

The real-time behaviour is remarkable even when the system is
heavy loaded

Programming API availabile in user space

Network Reflective Memory: very effective to share "small"
amounts of data with a known and guaranteed latency

Based on standard Gigabit Ethernet hardware → cheap

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 18/19



Thank you

ICALEPCS2011, Grenoble, 10-14 October 2011 - L.Pivetta - The FERMI@Elettra distributed real-time framework – p. 19/19


	Outline
	Real-time system
	PC architecture & OS
	Performance tuning
	Preemptible kernel
	Interrupt Service Routine
	Real-time subsystem
	Real-time performance
	Running in the ISR
	Running in a task
	Latency measurements
	Real-time test results
	Hardware
	NRM
	Principle of operation
	Use cases
	Conclusions
	Thank you

