Proceedings of ICALEPCS2011, Grenoble, France

TUBAUST02

FPGA COMMUNICATIONSBASED ON GIGABIT ETHERNET

L.R. Doolittle, C. Serrano, LBNL, Berkeley, CA 94720, USA

Abstract

The use of Field Programmable Gate Arrays (FPGAS) in
accelerators is widespread due to their flexibility, perfor-
mance, and affordability. Whether they are used for fast
feedback systems, data acquisition, fast communications
using custom protocols, or any other application, there is
a need for the end-user and the global control software to
access FPGA features using a commodity computer. The
choice of communication standards that can be used to in-
terface to a FPGA board is wide, however there is one that
stands out for its maturity, basis in standards, performance,
and hardware support: Gigabit Ethernet. In the context of
accelerators it is desirable to have highly reliable, portable,
and flexible solutions. We have therefore developed a chip-
and board-independent FPGA design which implements
the Gigabit Ethernet (GbE) standard. Our design has been
configured for use with multiple projects, supports full line-
rate traffic, and communicates with any other device im-
plementing the same well-established protocol, easily sup-
ported by any modern workstation or controls computer.

INTRODUCTION

The FPGA communication system based in GbE is the
result of two success stories. First FPGAs, whose capa-
bilities have improved dramatically in the last few years in
terms of size, performance, and flexibility. This tremen-
dous improvement has enabled the range of applications
of FPGA solutions to explode, increasing the volume of
production, and therefore reducing the price of every new
generation of FPGA family appearing on the market. The
second success story corresponds to Ethernet (and GbE as
the highest performance flavor to see adoption in today’s
commaodity hardware). The key to the success of Ethernet
resides in its simplicity and its associated side effects [1].
Implementation is simple in hardware and provides larger
data rates than most computers can process these days. The
evolution of the Ethernet protocol since its creation has ac-
companied that of computers since its creation in 1970s,
and has been the Local Area Network (LAN) protocol by
excellence ever since (with the market of Ethernet switches
alone amounting to $16 billion in 2010).

In accelerators, FPGAs have introduced a great deal of
flexibility and performance into machine fast controls and
operations. They are extensively used to implement highly
specialized tasks where simplicity, low production cost,
and reliability are big assets. Even if simple and reli-
able, these systems need means for communications with
commaodity computers for configuration, data acquisition
and diagnostics via Global Controls such as EPICS and

Hardware

TANGO. The nature of highly specialized hardware, com-
bined with the simplicity of the GbE protocol make the im-
plementation of GbE in FPGAs our preferred way of com-
munication with the Global Controls.

STANDARD SELECTION

Once computers are taken away from highly specialized
hardware in accelerators, a number of hardware standards
other than GbE are available to enable communication be-
tween FPGAs and Global Controls, such as: PCI, USB,
CAN, VME, VXI, cPClI, PCle, IEEE-488 (HP-IB), IEEE-
1392 (Firewire), SATA (or eSATA), etc. Longevity is a
usual requirement for hardware installed in accelerators,
and the chosen communication standard should last at least
as long as the actual hardware. While CAN, VME, |IEEE-
488 and cPCI are indeed standards, they do not achieve
as much performance/simplicity ratio as that provided by
GbE. PCI hardware will undoubtedly be present for a long
time, however active development seems to have shifted
from the original parallel standards to the high-speed serial
PCle version.

USB can be amazingly attractive for small projects.
Throughput is high, as is the availability for hardware com-
ponents for both sides of the link. On the other hand,
both software and hardware models are very much desktop-
based. Cable distance is limited, and the standard is young
and unstable enough that software support can be quirky.
The LBNL experience running USB-based instrumentation
affirms that it should be avoided for production accelera-
tor installations. Ethernet on the other hand accounts for
maturity, stability, high availability of hardware, high per-
formance and ease of integration with highly specialized
hardware in accelerators.

OVERVIEW

In addition to GbE, our implementation includes IP, UDP
and ARP at full line speed. UDP seems a better match to
real-time communications than TCP since point-to-point
dedicated networks are normally available in accelerator
deployments, and is much better suited to the finite re-
sources of an FPGA. The additional complexity added by
supporting UDP over raw Ethernet is largely rewarded by
the extensive UDP support on the host side (BSD sock-
ets API, and its descendants). Raw Ethernet support is not
as usual, and programs manipulating raw Ethernet pack-
ets typically require elevated levels of privileges, removing
one layer of security.

Fig. 1 shows a block diagram of an implementation ex-
ample using the FPGA Ethernet module. The core func-

547

TUBAUST02

ETHERNET FPGA MODULE

Proceedings of ICALEPCS2011, Grenoble, France

Client Custom
GMII Interface Interface(s
SGMII'| LvDs Rx gmii_link : ‘ | ©)
Data - 1 Client
Phase Slé)r?a— 110 | Rx bit Word PCS |10 |sBioB| 8 !FIFO : .
Aligner lizer Reversal Aligner Decoder I :
i : Client
""""""""""""" Aggregate | ! 2
LVDS Tx ggreg ;
Seria- Tx bit PCS | 10 |sBioB | s!
lizer Reversal Tx Encoder Client
N
Mii

Architecture dependent
Application dependent

Figure 1: Top level block diagram. Example where the architecture dependent modules correspond to the implementation

on an Altera Stratix-1V EP4SGX230KF40C2ES FPGA.

tionality is implemented in the Aggregate module, which
has been custom-designed using Verilog HDL. A clean sep-
aration between this module and rest of the design allows
for flexibility and portability, benefiting from a well defined
medium-independent interface in the GbE side (GMII in
the example shown in Fig. 1, which is defined as part of
the GbE standard), and another well defined client inter-
face for data exchange with the FPGA fabric. Details on
the core design and interfaces are given next.

CORE DESIGN

The core design described here includes the architec-
ture/implementation independent modules, shown in black
in Fig. 1. This logic is independent of the targeted FPGA
(as well as any peripherals), the particular application of
the communication, and implements layers 2, 3, and 4 of
the OSI model.

The FPGA Ethernet module has compile-time config-
urable IP and MAC addresses, and the current implemen-
tation assumes that the host side uses a single UDP port
number for communication. Aggregate implements the up-
per level logic to (de)encapsulate UDP packets. It extracts
the UDP packet length in the length field and uses it to gen-
erate the necessary control signals needed to interact with
the client modules in the FPGA fabric. The host has the
possibility of communicating with any of the n clients (in
blue in Fig. 1), where each client is assigned a UDP port
number. More details on the clients are given later.

The PCS Rx/Tx modules implement the 802.1x PCS
standard, building a block which interfaces the Ethernet
framer to Tx PMA (Physical Medium Attachment). It per-
forms preamble generation, inserting idle patterns, 802.1x
link negotiation and all the low-level signaling (excluding

548

8B10B coding, which is implemented in the 8B10B En-
coder/Decoder). The 32-bit CRC of the Ethernet frame,
and the length of the IP and UDP packets are checked for
correctness. If any errors are detected, the whole Ethernet
frame is dropped and the clients stay idle. Details on the
clients are given next.

INTERFACES
Client Interface (FPGA side)

Rx chain client interface

client - ready
-— strobe
-—data X X data X
chain X ERENIRY T X) data x_

ph, pl: UDP port high and low octet
Ih, Il: UDP datagram length high and low octet
(subtract 8 from datagram length to get number of payload bytes)

Figure 2: Rx chain in the client interface shown in Fig. 1.

The Aggregate module provides the data contained in
the UDP packet payload to the client modules (application
dependent modules shown in blue in Fig. 1), where the dis-
tinction of each client is done using the UDP port number.
These clients exist to provide the flexibility of implement-
ing different custom protocols adapted to the application
needs. This level of communication relies on data trans-
action from levels 1 through 4 in the OSI model, and cus-
tom interfaces to interact with the rest of the fabric in the
FPGA. The different client instantiations share a common
interface with the Aggregate module (labeled “client inter-
face” in Fig. 1), and each implement a custom interface

Hardware

Proceedings of ICALEPCS2011, Grenoble, France

with the rest of the fabric in the FPGA (labeled “Custom
Interface(s)” in Fig. 1).

Tx chain client interface

- L-req X
client

—length _x) Tength Y X

~—ack

|— strobe —/Tength as requested\~—

|~ data X) data N x

A B [B
. P Y Y ——
chain 0 (ERENTR)IT) 0) data o

A: sent down Tx chain by head_tx

B: inserted in Tx chain by emux_tx, based on control signals
C: time reserved for Ethernet header

ph, pl: UDP port high and low octet

Ih, Il: Payload length high and low octet

Figure 3: Tx chain in the client interface shown in Fig. 1.

Figs. 2 and 3 show the Rx and Tx flow chain for the
client interface, respectively (seen from the clients’ per-
spective). The Rx chain follows a simple strobe and data
transmission, where the strobe is high if the data is valid,
and the UDP packet it was sent into contained the UDP
port associated with the client. A ready signal is provided a
fixed number of clock cycles before the strobe, which can
be used by the client module to anticipate when it will re-
ceive valid data.

The Tx chain follows a similar transmission scheme
(strobe and data), preceded by a transmission request for
a scheduler to assign when each client transmits the data
onto the Ethernet link. When the client is ready to send
data, it sets the request signal along with the length of the
data to be transmitted. Once the scheduler has established
the turn of the client to send the data, it sends an acknowl-
edge to the client, that will then receive a strobe for as many
clock cycles as previously specified in the length field.

The design is modular, and each UDP clients is han-
dled by a different Verilog module. In addition to that,
the project package includes means to automatically gen-
erate Verilog code for the Aggregate module, including au-
tomatic replication of client handling logic, and the proper
module prototype to connect to as many clients as needed.

On-board Local Busto UDP Gateway

Local bus encoded 64-bit frame

CTL | ADDRESS DATA

8 24 32
Figure 4: Local bus 64-bit frame.

In the general case, the Ethernet module provides a link
between UDP/IP, and a series of customized interfaces,
There are as many clients as protocols are encoded in the
UDP packet payloads, and each client is assigned a UDP
port number to be accessed from the host side. One exam-
ple of client is what we call the Local Bus to UDP Gateway,

Hardware

TUBAUST02

where the access to FPGA registers is provided by a very
simplified on-board data, address, strobe type local bus.

The master of the transaction is the software side, which
can send series of register read and write commands to the
FPGA by concatenating the 64-bit frame pattern (shown in
Fig. 4) into the UDP payload. One of the 8 control bits is
used to indicate the read/write command. If a read com-
mand is found, the FPGA ignores the data field and re-
sponds using the same 64-bit pattern, where the control and
address field remain unchanged, and the data field is filled
with the corresponding register value. On the other hand,
if a write command is found, the data field is written onto
the corresponding register, and the same frame is sent back
to the host (which can use it as an acknowledgement). This
scheme described above has an intrinsic bandwidth limit
for the FPGA, since it only sends data upon request.

Host Interface (GbE link side)

The Ethernet protocol has increasingly added support for
different data rates and physical media, and different FP-
GAs implement the physical layer (including serializer and
deserializer mechanisms) differently. It was therefore in-
dicated to provide a medium-independent interface to the
core of the design in order to preserve generality and porta-
bility. A GMII interface (defined as part of the Ethernet
standard) is provided to connect the FPGA core logic and
the architecture specific modules (in red in Fig. 1).

The package described here also includes means to at-
tach a live simulation of the synthesizable Verilog to a
Linux tun/tap interface, where the GbE link can be ab-
stracted and third party software can be used to exchange
UDP packages with the FPGA logic, which has been ex-
tremely helpful in the debug process and can be used for
early development of software without the need of actual
hardware.

CONCLUSIONS

The Ethernet module has been used in various projects
under different inter-lab collaborations. The package con-
tains (not counting various instantiation of hardware prim-
itives) purely synthesizable Verilog. There is no need for
off-chip memory and synthesizes using 930 logic cells,
and 3 block RAMs on a Xilinx Spartan-6 XC6SLX45T
(which accounts for 1.7% and 2.6% of the available re-
sources respectively). The physical layer has been demon-
strated functional using GMII, Xilinx Virtex-5 MGT, and
Altera Stratix-1V LVDS. The project is continuously evolv-
ing as new needs arise, and physical layer support plans or
currently ongoing testing include RGMII (double-date-rate
GMII), Spartan-6, and Virtex-6.

REFERENCES

[1] Rich Seifert, “Gigabit Ethernet: Technology and Applica-
tions for High Speed LANs”, Addison-Wesley, 1998

549

