

Automated Operation of the Metrology Light Source Storage Ring

Thomas Birke

based on work of T. Birke, M. Abo-Bakr, D. Engel, J. Feikes, B. Franksen, M. v. Hartrott, G. Wüstefeld, ...

October 2009 - ICALEPCS'09 - Kobe, Japan

What is the Metrology Light Source (MLS)?

Low energy e storage ring

 Metrology and technological developments in UV/XUV as well as IR and THz

 Optimized for generation of coherent SR in FIR/THz

• Owner:

Physikalisch-Technische Bundesanstalt (PTB)

German national metrology institute

Built according to PTB specifications and operated by BESSY which is now part of the new
 Helmholtz-Zentrum Berlin für Materialien und Energie Gmb

• In regular user operation since April 2008

Operating the Metrology Light Source

- Wide range of operating modes and parameter settings
 - Current: 1 pA (a single electron) up to 200 mA
 - Energy: 105 MeV 629 MeV
 - Momentum compaction factor α: varies by factor of ~1000
- Electromagnetic Undulator
 - strong non-linear fields enforce compensation with correction coils using fully automatic feed-forward system
 - otherwise impossible to accumulate and store beam
- Injection setup differs from operation setup
 - Orbit bump
 - Asymmetric sextupole settings
 - RF frequency modified

Operating the Metrology Light Source

Specialties require complex procedures

- Setup changes often according to user demands
 - Even on short notice
- Energy Ramp before and after injection with minimum loss of beam
 - Special procedure
 - also used as degaussing cycle
 But: Magnets not driven into full saturation
 - → Machine performance is very sensitive to magnet-setting-errors
- Optics Change program to change momentum compaction factor
 - Another special procedure (similar to Energy Ramp)

Operating the Metrology Light Source

- Several tasks to be performed by operation personnel
 - Inject up to desired current
 - Ramp energy before and after injection as well as on user-demand
 - Change optics (momentum compaction factor)
- All tasks require several actions and may even require sub-tasks
- Any **error** (esp. in magnet settings) may **strongly deteriorate** machine performance
- Operated by BESSY/HZB staff for PTB
 - Paid customer service
 - Deliver high operational reliability with maximum transparency and minimum personnel effort
- High degree of automation required!

Software System – Status at the Beginning

- Several localized sub-tasks already realized in separate applications
 - Energy Ramp, Optics Change (Momentum Compaction Factor)
 - Optimizing microtron output
 - Orbit Correction, RF Master Clock Controller, ID-controls...
- What action to perform how and when? Organized by operator
 - Expertise is in the heads sometimes even documented
 - All signals needed to decide what to do and when are available in control system (EPICS – Experimental Physics and Industrial Control System)
- Decided to develop one central application to coordinate necessary tasks
 - Operation Master
 - Software model: Finite State Machine

Software System – Finite State Machine (FSM)

- Set of States of a described system
 - States represent all possible (known) states of the machine
 - Active state resembles current machine-state
 - Software and machine are to be kept in sync
- Transitions between these states
 - Well defined conditions unambiguously force transitions into other states
 - All transitions/conditions of active state checked on every incoming event
 - Change of a control system process variable
 - Timeout
- Actions may be performed on transition and/or when entering a state

State Machine – Current Version

Blue

In-Sequence transitions "expected"

Orange

Out-of-Sequence transitions "unexpected" or Operator interaction

Red

- Error transitions
- Image created by GraphViz (www.graphviz.org)
- Input to GraphViz created by Operation Master

Waiting for min. current (80mA)

Operation Master – Development

- **MLS Operation Master** Mode Injection Energy Ramp act. Current: 109.4476 mA act. Energy: 630.0 MeV **User Operation** Whole system not developed by design according to full specification Ramp-Tables: static.up • State Engine – as generic as possible/necessary unit in the company of the comp Injection/Trigger: RF-Freq: 499684.000 kHz
 - State Machine unspecified, very simple first version
- Evolutionary development process (still going on after 18 months)
 - Experiences of commissioning and daily use of application itself
 - Yet unhandled states only identified when using the application
 - Solutions to problems often roughly sketched refinement phase
 - Clear view of solution often arises during discussions between developer and users/scientists → close cooperation drives development
 - Numerous small development steps
 - Some removed in favor of other solution or have proven obsolete during further commissioning

Operation Master – Implementation

- First version written in Tcl/Tk
 - Proper choice for rapid prototyping
 - Monolithic application
 - State machine, subprocess-control graphical user interface (GUI)

But:

- Only one instance can be running at a time
- Application only visible on a single screen
- Idea: split FSM and GUI, simplify interfaces
- Rewrite in *Python* considered

Operation Master – Future (as planned in spring 2009)

- Operation Master redesigned and new implementation in progress
 - Headless server process
 - State machine and state engine only
 - Written in Python programming language
 - All interaction using control system process variables
 - Remote-control from other applications
- Use of standard control system tools (EPICS-Toolkit) for
 - Display graphical display manager can be run on any screen
 - EPICS Channel Access Security used to control permissions
 - Alarm monitoring and logging operator notification and analysis
 - Archiving for later analysis and debugging

Operation Master – current state

and modified

- Operation Master redesigned and new implementation in progress
 - Headless server process
 - State machine and state engine only
- to keep the well-known, easily maintainable and settled but still evolving State Machine code
- Written in June programming regulare
- All interaction using control system process variables
- Remote-control from other applications
- Use of standard control system tools (EPICS-Toolkit) for
 - Display graphical display manager can be run on any screen
 - EPICS Channel Access Security used to control permissions
 - Alarm monitoring and logging operator notification and analysis
 - Archiving for later analysis and debugging

Automated Operation of the Metrology Light Source Electron Storage Ring

Operation Master – Implementation

- Current version written in **TcI/**Tk
 - GUI has been factored out
 - All interaction via EPICS PVs
 - User as well as other software components (IPC)

So:

- Operation Master now is a windowless background process (run on a central server)
- Can be monitored/controlled from anywhere
- Simplified interfaces lead to even more stable machine operation

Conclusion

- Operation Master: indispensable operator instrument since day one
- Minimizes errors by performing complex command sequences
- Implements standard mechanisms to set up certain states as well as to recover from failure situations
- Will be extended to cover all future standardized tasks at MLS as well

Experiences and success encourage using the same system for existing as well as future projects at BESSY/HZB