
Using Windows XP

Embedded Based Systems

in a Control System

Tim Gray, Bob Mannix

ISIS Controls Group

STFC, Rutherford Appleton Laboratory

UK

ICALEPCS 2009, Kobe, Japan

Presentation Outline

• Why did we do this?

• Platform choices.

• Building a Windows XP Embedded

Image.

• The application program.

Why did we do this?

• Needed a platform to interface between

VSystem software and various types of

hardware: magnets, power supplies etc.

Control

System

STEbus STEbus STEbus

PSU Magnet Other

Ethernet

Various

cabling

Platform Choices

Hardware:

• CompactPCI based

• J2 Connector for rear IO

An example chassis

A picture of a fully configured chassis. This is the Central

Timing Distributor (CTD) for ISIS, a fairly important piece of

equipment!!

Platform Choices

Operating System:

• Windows CE Embedded

• Windows XP Embedded

• Embedded Linux

• QNX

BUILDING A WINDOWS XP

EMBEDDED IMAGE

Windows Embedded Studio

• Target Analyzer

• Component Database Manager

• Target Designer

• Component Designer

• SDI Loader & sdimgr.exe

• Remote Boot Manager

Beginning with XP Embedded

• Windows XP Embedded is component based.

• Using a Board Support Package (BSP)

• Analyze your target hardware.

Target Designer

Create your image by adding components, then perform a

dependency check and build your image.

First Boot Agent (FBA)

Runs the first time you boot your image on your target

device and performs such things as Plug and Play device

detection, network configuration etc.

FBReseal

This basically clones your image, ready to distribute to

multiple target devices.

SDI Loader.

SDI Loader is used to create a network boot file to use in

conjunction with the PXE protocol in a compatible BIOS.

Remote Boot Manager

Use this to determine which target devices load which

Windows XP Image over the network. This process requires

PXE support in the target device BIOS.

THE APPLICATION PROGRAM

Application Layout

Kontron Chassis

Vista Controls

System

(OpenVMS)

IO Cards

XP Embedded

Service Application

HTTP Server

Database

Application

Database download XML format

This is an example of the XML with the HTTP POST header that is sent

from the controls system to the Windows XP Embedded chassis where it

will be processed into a Database object.

Database through a browser.

You can view the current Database object via a browser, this

is the same information that the reader process on the

controls system periodically retrieves.

Application Service

Start the HTTP

Server

Wait for an event

or timeout

Stop the HTTP

Server

Told to quit
A timeout

occurred

An update is in

the write queue

Common Use

• Database Class

– Create it before use, contents sent via XML once HTTP Server starts.

– Exposes an event that signals when it has been updated from the Control

System (Vsystem).

– Contains Channel objects, application works with these.

– IsItNew() – Has a new database been downloaded.

– IterateChannels() – Step through each channel in the database.

– UpdateChannel() – Update a channel in the database.

– Lock() & Unlock() – Multi channel operations mainly.

• HttpServer Class

– Handles database/channel writes from VMS, all exchanged via HTTP/XML.

– Supply a database as a parameter using Start() method.

Common Use

• Channel Class

– GetType(), retrieves the data type of channel e.g. CPS_FLOAT,

CPS_FLOAT_ARRAY

– GetValue() / SetValue() , to modify channel data.

– GetActivity()

– GetCardId()

Conclusion

• It works!

• It has freed the hardware guys from writing

networking software.

• Pretty easy to deploy a new image.

• Slower booting, but this is mitigated because it

doesn’t happen often.

• Changing the image for regular updates is a

necessary evil, as is anti-virus & a firewall. But you

can mitigate the exposure by limiting the

components.

• Useful to view from a browser.

