
Evolution of the
EPICS Channel Access Protocol

Klemen Žagar <klemen.zagar@cosylab.com>

Matej Šekoranja

Marty Kraimer

Bob Dalesio

mailto:klemen.zagar@cosylab.com

Overview

 The role of the EPICS Channel Access (CA) protocol

 What is new in EPICSv4’s CA?

 Clean design with few dependencies

 Asynchronous API and design

 Support for structured process variable (PV) data – pvData

 Connecting to several fields of a pvData structure

 Client-specified filters

 Flow control for monitors

 Remote procedure calls

 Plans

 Conclusion

2ICALEPCS 2009

The role of the EPICS Channel Access (CA) protocol

 Enables communication between EPICS clients, input/output controllers and other

nodes.

Client requests data, server provides data.

 Record: an addressable, self-consistent unit of data. E.g., represents a process

variable. Consists of fields (e.g., value, alarm status, etc.).

 Channel:

 (Virtual) connection between client and server.

 System-wide unique name.

3ICALEPCS 2009

Client

application

(GUI)

Workstation

CA client

Input/output controllerServer

Control process

CA clientCA server

IOC EPICS database

Control flow direction

CA clientCA server

WHAT IS NEW FOR EPICSV4?

4ICALEPCS 2009

Clean design with few dependencies

 Depends only on pvData (more info later).

 No dependencies on third-party software, not even middleware such as

CORBA, DDS, ICE, etc.

 Network and concurrency management can be reused from previous

projects (e.g., Channel Access for Java).

 Clean separation of interface and implementation reduces coupling.

 Extensive use of factory design pattern to allow changing of

implementations without requiring modifications of code.

5ICALEPCS 2009

+getProvider()

«interface»

ChannelAccess

+getChannelAccess()

ChannelAccessFactory
+createChannelGet()

+createChannelPut()

+createMonitor()

«interface»

Channel

«interface»

pvData::Requester

«interface»

ChannelRequest

«interface»

ChannelPutGet

«singleton»

ChannelAccessImpl

+channelFind()

+createChannel()

+query()

«interface»

ChannelProvider

ChannelProviderImpl

ChannelPutGetRequestImplChannelImpl

Asynchronous API and design

 When dealing with input/output or communication, asynchronous

API allows for better application design.

 Able to launch operations in parallel without having to spawn threads.

 Drawback: code is more complex even for simple operations.

 A synchronous helper API will be provided.

 Example:

 create a get request:

 when the request is complete, callback on the requester is called:

6ICALEPCS 2009

Support for structured process variable (PV) data

 In EPICSv3, each record had fields, which were scalars or arrays.

 With pvData, a field can also be a structure.

 Thus, record is a top-level field.

 Example:
powerSupply

alarm

timeStamp

power

value

alarm

voltage

value

alarm

current

value

alarm

output

value

...

7ICALEPCS 2009

-Name

-Type

Field

Record

1

*

Connecting to several fields of a pvData structure

 In EPICSv3, each CA channel allowed connection to a single field.

Channel ch = context.createChannel("RECORD.VAL");

 In EPICSv4, a channel can connect to a subset of record’s fields:

ChannelGet getReq = channel.createChannelGet(…,

ChannelAccess.createRequest("alarm, timestamp"),

…);

 Once a ChannelGet object is created, the same get request can be

re-issued:

getReq.get(false);

getReq.get(false);

…

getReq.get(true); // last request

8ICALEPCS 2009

Client-specified filters

 Client can configure behavior of monitors to filter-out any changes

that do not affect it.

 The filtering is done already at the server-side (no network traffic).

 The filters are client-specific: e.g., different clients might have different

dead-band tolerances.

 These monitoring algorithms are available:

 onPercentChange: if change is within deadband percent of the last

reported value, it is not reported.

 onAbsoluteChange: if change is within deadband of the last

reported value, it is not reported.

 onChange: report any change.

 onPut: report whenever the value of the field is set.

 Additional monitoring algorithms can be registered at the server.

 E.g., monitoring on an external trigger.

 Client code must use the name with which the monitor is used at the

server, and provide any needed parameters.

9ICALEPCS 2009

Flow control for monitors

 If changes are too frequent, server can generate monitors more

frequently than they can be handled.

 Bottleneck: network or client’s CPU.

 Flow control allows the server to detect when the client can no

longer accept monitor notifications:

 TCP flow control.

 Server monitors clients’ receive buffers.

 Server has a queue for monitors. Queue size is configurable:

 Shared: 0 – the server sends the data directly from the record

 Cached: 1 – the server maintains the latest copy of the data

 Queued: n>1 – n last versions of data are kept in a FIFO

10ICALEPCS 2009

Remote procedure calls

 In EPICSv3, remote procedure calls (RPC) were impossible to

perform, unless in some special cases or with special approaches:

 E.g., marshal invocation data in a waveform, and un-marshal in device

support…

 How to get the return value or completion status?

 How to correlate return value with invocations (e.g., if several

concurrent invocations are in progress).

 CA for EPICSv4 has a special provision for RPC-style
communication: the PutGet request:

 First put data to some subset of record’s fields.

 Wait until processing at the server completes.

 Then get data from a subset of record’s fields.

11ICALEPCS 2009

 Decreased beacon traffic

 Server does not send beacons.

 When server receives an echo request from the client, it responds.

 Client only echoes a server if the server doesn’t send data for a period

of time.

 A note on compatibility

 EPICSv4 CA protocol is not compatible with EPICSv3.

 However, it is possible to use CA libraries simultaneously.
 Access to JavaIOC database with EPICSv3 and EPICSv4 clients.

 Also, JavaIOC can talk with EPICSv3 or EPICSv4 servers.

12ICALEPCS 2009

Plans

 Distributed queries

 Queries such as: “find all beam position monitors”

 IP multicast monitors

 When several clients subscribe for same data, it would be possible to

send the data to all of them.
 A single send operation for the server.

 The dispatching performed by network infrastructure (switches).

 Technique: IP multicasting.

 Requires UDP protocol.
 Difficult to ensure reliable delivery and flow control.

 Access control

 Presently, no access control checks are done.

 At what level of granularity should access control be applied?

 Ideally compatible with EPICSv3.

 TCP transport improvements

 A stream-like API to upper levels…

 …taking into account MTU size when transmitting data

13ICALEPCS 2009

C++ implementation

 The development focuses on Java

 Quick and efficient prototyping and development

 Other implementations are planed

 In particular, C++

 Implementation will commence when Java design and

implementation are stable

14ICALEPCS 2009

Conclusion

 Development of EPICSv4’s Channel Access has reached a point where it

can be used for first applications.

 Concept-wise backward compatible with EPICSv3.

 EPICSv4 applications can talk to EPICSv3, and vice-versa.

 New features (such as RPC) reduce the “feature gap” with

CORBA/ICE/RMI/SOAP and similar middleware.

 Foreseen improvements (TCP transport improvements, multicasting) likely to

reduce “performance gap” with state-of-the-art middleware (e.g., commercial

DDS implementations).

 Remains concentrated to control systems (monitor quality of service, etc.).

 JavaIOC

 Infrastructure is in place.

 No device support drivers yet, but suitable for high-level applications, integration

with other systems, etc.

 Your input?

 Now is a great time for considering new features and adjusting priorities.

 Have an application?

 Available on Sourceforge

 http://epics-pvdata.sourceforge.net/

15ICALEPCS 2009

http://epics-pvdata.sourceforge.net/
http://epics-pvdata.sourceforge.net/
http://epics-pvdata.sourceforge.net/

Thank You for Your Attention

16ICALEPCS 2009

