
Evolution of the
EPICS Channel Access Protocol

Klemen Žagar <klemen.zagar@cosylab.com>

Matej Šekoranja

Marty Kraimer

Bob Dalesio

mailto:klemen.zagar@cosylab.com

Overview

 The role of the EPICS Channel Access (CA) protocol

 What is new in EPICSv4’s CA?

 Clean design with few dependencies

 Asynchronous API and design

 Support for structured process variable (PV) data – pvData

 Connecting to several fields of a pvData structure

 Client-specified filters

 Flow control for monitors

 Remote procedure calls

 Plans

 Conclusion

2ICALEPCS 2009

The role of the EPICS Channel Access (CA) protocol

 Enables communication between EPICS clients, input/output controllers and other

nodes.

Client requests data, server provides data.

 Record: an addressable, self-consistent unit of data. E.g., represents a process

variable. Consists of fields (e.g., value, alarm status, etc.).

 Channel:

 (Virtual) connection between client and server.

 System-wide unique name.

3ICALEPCS 2009

Client

application

(GUI)

Workstation

CA client

Input/output controllerServer

Control process

CA clientCA server

IOC EPICS database

Control flow direction

CA clientCA server

WHAT IS NEW FOR EPICSV4?

4ICALEPCS 2009

Clean design with few dependencies

 Depends only on pvData (more info later).

 No dependencies on third-party software, not even middleware such as

CORBA, DDS, ICE, etc.

 Network and concurrency management can be reused from previous

projects (e.g., Channel Access for Java).

 Clean separation of interface and implementation reduces coupling.

 Extensive use of factory design pattern to allow changing of

implementations without requiring modifications of code.

5ICALEPCS 2009

+getProvider()

«interface»

ChannelAccess

+getChannelAccess()

ChannelAccessFactory
+createChannelGet()

+createChannelPut()

+createMonitor()

«interface»

Channel

«interface»

pvData::Requester

«interface»

ChannelRequest

«interface»

ChannelPutGet

«singleton»

ChannelAccessImpl

+channelFind()

+createChannel()

+query()

«interface»

ChannelProvider

ChannelProviderImpl

ChannelPutGetRequestImplChannelImpl

Asynchronous API and design

 When dealing with input/output or communication, asynchronous

API allows for better application design.

 Able to launch operations in parallel without having to spawn threads.

 Drawback: code is more complex even for simple operations.

 A synchronous helper API will be provided.

 Example:

 create a get request:

 when the request is complete, callback on the requester is called:

6ICALEPCS 2009

Support for structured process variable (PV) data

 In EPICSv3, each record had fields, which were scalars or arrays.

 With pvData, a field can also be a structure.

 Thus, record is a top-level field.

 Example:
powerSupply

alarm

timeStamp

power

value

alarm

voltage

value

alarm

current

value

alarm

output

value

...

7ICALEPCS 2009

-Name

-Type

Field

Record

1

*

Connecting to several fields of a pvData structure

 In EPICSv3, each CA channel allowed connection to a single field.

Channel ch = context.createChannel("RECORD.VAL");

 In EPICSv4, a channel can connect to a subset of record’s fields:

ChannelGet getReq = channel.createChannelGet(…,

ChannelAccess.createRequest("alarm, timestamp"),

…);

 Once a ChannelGet object is created, the same get request can be

re-issued:

getReq.get(false);

getReq.get(false);

…

getReq.get(true); // last request

8ICALEPCS 2009

Client-specified filters

 Client can configure behavior of monitors to filter-out any changes

that do not affect it.

 The filtering is done already at the server-side (no network traffic).

 The filters are client-specific: e.g., different clients might have different

dead-band tolerances.

 These monitoring algorithms are available:

 onPercentChange: if change is within deadband percent of the last

reported value, it is not reported.

 onAbsoluteChange: if change is within deadband of the last

reported value, it is not reported.

 onChange: report any change.

 onPut: report whenever the value of the field is set.

 Additional monitoring algorithms can be registered at the server.

 E.g., monitoring on an external trigger.

 Client code must use the name with which the monitor is used at the

server, and provide any needed parameters.

9ICALEPCS 2009

Flow control for monitors

 If changes are too frequent, server can generate monitors more

frequently than they can be handled.

 Bottleneck: network or client’s CPU.

 Flow control allows the server to detect when the client can no

longer accept monitor notifications:

 TCP flow control.

 Server monitors clients’ receive buffers.

 Server has a queue for monitors. Queue size is configurable:

 Shared: 0 – the server sends the data directly from the record

 Cached: 1 – the server maintains the latest copy of the data

 Queued: n>1 – n last versions of data are kept in a FIFO

10ICALEPCS 2009

Remote procedure calls

 In EPICSv3, remote procedure calls (RPC) were impossible to

perform, unless in some special cases or with special approaches:

 E.g., marshal invocation data in a waveform, and un-marshal in device

support…

 How to get the return value or completion status?

 How to correlate return value with invocations (e.g., if several

concurrent invocations are in progress).

 CA for EPICSv4 has a special provision for RPC-style
communication: the PutGet request:

 First put data to some subset of record’s fields.

 Wait until processing at the server completes.

 Then get data from a subset of record’s fields.

11ICALEPCS 2009

 Decreased beacon traffic

 Server does not send beacons.

 When server receives an echo request from the client, it responds.

 Client only echoes a server if the server doesn’t send data for a period

of time.

 A note on compatibility

 EPICSv4 CA protocol is not compatible with EPICSv3.

 However, it is possible to use CA libraries simultaneously.
 Access to JavaIOC database with EPICSv3 and EPICSv4 clients.

 Also, JavaIOC can talk with EPICSv3 or EPICSv4 servers.

12ICALEPCS 2009

Plans

 Distributed queries

 Queries such as: “find all beam position monitors”

 IP multicast monitors

 When several clients subscribe for same data, it would be possible to

send the data to all of them.
 A single send operation for the server.

 The dispatching performed by network infrastructure (switches).

 Technique: IP multicasting.

 Requires UDP protocol.
 Difficult to ensure reliable delivery and flow control.

 Access control

 Presently, no access control checks are done.

 At what level of granularity should access control be applied?

 Ideally compatible with EPICSv3.

 TCP transport improvements

 A stream-like API to upper levels…

 …taking into account MTU size when transmitting data

13ICALEPCS 2009

C++ implementation

 The development focuses on Java

 Quick and efficient prototyping and development

 Other implementations are planed

 In particular, C++

 Implementation will commence when Java design and

implementation are stable

14ICALEPCS 2009

Conclusion

 Development of EPICSv4’s Channel Access has reached a point where it

can be used for first applications.

 Concept-wise backward compatible with EPICSv3.

 EPICSv4 applications can talk to EPICSv3, and vice-versa.

 New features (such as RPC) reduce the “feature gap” with

CORBA/ICE/RMI/SOAP and similar middleware.

 Foreseen improvements (TCP transport improvements, multicasting) likely to

reduce “performance gap” with state-of-the-art middleware (e.g., commercial

DDS implementations).

 Remains concentrated to control systems (monitor quality of service, etc.).

 JavaIOC

 Infrastructure is in place.

 No device support drivers yet, but suitable for high-level applications, integration

with other systems, etc.

 Your input?

 Now is a great time for considering new features and adjusting priorities.

 Have an application?

 Available on Sourceforge

 http://epics-pvdata.sourceforge.net/

15ICALEPCS 2009

http://epics-pvdata.sourceforge.net/
http://epics-pvdata.sourceforge.net/
http://epics-pvdata.sourceforge.net/

Thank You for Your Attention

16ICALEPCS 2009

