
TINE Release 4.1
Responding to the User's Needs

Emphasis on Control System Evolution

Control System Evolution

 Some forces driving „evolution‟ :
 Things are changing around you …

 64-bit OSes are now common

 Gigabit ethernet is now common

 New hardware available, Old hardware is obsolete,
etc.

 New technologies appear (and disappear) all the time.

 Users are requesting change …
 „Fix this bug …‟

 „Add this feature …‟

 „I need an interface to Software X …‟

 You want to improve things anyway !

„The most curious part of the thing was that the trees and the

other things round them never changed their places at all:

however fast they went, they never seemed to pass anything.‟
…

`Now, here, you see, it takes all the running you can do, to keep

in the same place. If you want to get somewhere else, you must

run at least twice as fast as that!'

- Lewis Carroll, “Through the Looking Glass”

The Red Queen Syndrome

See also: “The Red Queen” by Matt Ridley

The „Race Condition‟

 Predators and Prey

 Predators devise new ways to trap prey

 Prey devise new ways to escape predators

 Viruses and the Immune System

 (ditto)

“The natural enemy of the control system

developer is the User!”

Who are the users?

 Application developers
 API problems

“why didn‟t that work?”, “I need a method to …”

 Hardware engineers
 behavioral problems

“why don‟t I have an archive of …”

 Machine physicists/operators
 systematic problems

“why do I see a fatal alarm with beam in the machine?”

 Other control systems

problem = bug or feature request

Application Developers and TINE 4.1

 Some new TINE 4.1 API Features
 Security :

 Property specific access lists

 Access locks
 easier to use

 offer exclusive read

 Optional dispatch routines :
 Property access signals

 accessed, retried, pending, sent, etc.

 Cycle Trigger functions
 Optional dispatch routine

 Data objects „stamped‟ with the cycle number

 Scheduling can be eager or lazy

 etc.

/Context/server/device [property]

Application Developers and TINE 4.1

 Example of new „use case‟ and response :

 Multi-Channel Arrays (MCAs)

Some applications insist on acquisition „one at a time‟!

-> dispatch gets 300 interrupts/sec instead of 1/sec.

MCAs are an efficient way to

atomically deliver a collection

of devices (all 300 vacuum

pressures, power supply

currents, BPMs, temperature

sensors, etc.)

Application Developers and TINE 4.1

 Solution in TINE 4.1:

MCA acquisition enforced!
• Handshaking returns requested

array index and length of array.

• All happens beneath the API !

e.g. BPM Server has several

clients getting all 227 horz.

and vert. orbit positions

Hardware Engineers and TINE 4.1

 Example of behavioral expectations:
 TINE Archive is designed for speed !

 Lookups
 single channel over a time-range ~ 100µsecs/channel

 MCA lookup at a single time ~ µsec/channel

 Viewers
 Use optical zoom with maximum 5000 data points over a

time range

 Each zoom re-acquires archive data

 Very fast browsing !

 BUT:
 With this viewing strategy there‟s a raster!

 Will I miss „glitches‟ ?

TUP034

Hardware Engineers and TINE 4.1

e.g. Kicker Delay

Setting (Sept. 30)

Spikes appear in

the afternoon

Hardware Engineers and TINE 4.1

e.g. Kicker Delay Setting

(month of Sept.)

Introduce: Points of Interest !

-Archived data flagged as

‘interesting’ if well outside

tolerance!

-Will NOT be omitted from

archive call!

Machine Physicists/Operators and TINE 4.1

 Led to improvements in TINE Alarm

System

 Expectations led to improvements in

performance

 e.g. real-time video over Gigabit ethernet

should allow lossless video at 100

Mbytes/sec, right?

Interoperability and TINE 4.1

 DOOCS

 TINE is embedded !

 Many impedance mismatches found and fixed.

 Make sure name-space, format space, etc.

remain synchronized.

 Alarms and Archives must map properly

 Turing Test: “Is it DOOCS or is it TINE?”

Interoperability and TINE 4.1

 EPICS

 Need fully functional mapping between TINE and EPICS

 epics2tine runs embedded on the IOC

 javaIOC also has a TINE interface (cosylab)

 Understand difference between pvData and device server
property access.

 Database view vs. Property calls to a device instance.

 Mapping is mostly straightforward

 javaIOC

 requirement of structures with mutable strings

 TINE 4.1: allow TINE structures to contain variable length data
types (STRING, IMAGE, SPECTRUM)

Interoperability and TINE 4.1

 TANGO
 Generally a good fit!

 tango2tine:

 TANGO has no name length restrictions; TINE does.
(does one worry about this? Device Names can
contain up to 1024 chars)

 TANGO classes can either map to TINE device
servers or a TINE device group

 tine2tango:

 TINE structures aren‟t mapped at the moment

 Servers with „property-query precedence‟ do not
map well.

Interoperability and TINE 4.1

 STARS/COACK

 STARS bridge to TINE maps well

 BUT:

 STARS has no hierarchy limitations

 Hierarchy beyond /context/server/device (i.e. sub-

device, etc.) gets assigned to „device‟

 Device names such as “device/sub-device/sub-

sub-device/etc” are in general not a problem for

TINE.

Other Factors …

 Keeping pace with LabView

 Keeping pace with MatLab

 Keeping pace with .NET

 Keeping pace with java

 Keeping pace with Operating Systems (64bit
or otherwise)
 Subtle behavioral changes with Winsock starting

with Vista!

 Etc.

The Future …

 Keep running in place toward TINE 4.2 !

Thanks for your attention …

see http://tine.desy.de for details …

