
ALMA Software Project Management
Lessons Learned

G. Raffi1 (*), B.E. Glendenning2

1European Southern Observatory, Garching, Germany
2National Radio Astronomy Observatory, Socorro, New Mexico, USA

Abstract

The Atacama Large Millimeter/Submillimeter Array (ALMA) is the largest radio telescope currently under
construction by a world-wide collaboration. The first antennas (the total will be 54 12m antennas and 12
7m antennas) are being commissioned to become part of the interferometer at a high site (5000m) in
Chile. The ALMA Software (~ 70% completed) is in daily use and was developed as an end-to-end
system including proposal preparation, dynamic scheduling, instrument control, data archiving, automatic
and manual data processing, and support for operations. The management lessons learned will be
explained. Aspects described will go from requirements analysis to the use of a development framework:
ALMA Common Software (ACS) in our case. The process used to provide regular releases will be
outlined, including temporary cross-subsystem teams. The importance of integrated regression tests will

Lessons Learned

Requirements collection (with Use Cases) was important
There will be still missing or late requirements, but design is done upfront
Requirements working group to be recommended
Tracking requirements completion to show progress (planned vs. actual)

Using a software framework is essential (ACS)
(but most of this would apply also to EPICS, TANGO etc):
Allows collaborative work, results in an homogeneous system
Provides a solid debugged base of software
Enforces also hardware standards and operating system versions
Makes large distributed projects manageable and maintainable

ALMA High Site (5000m)

, g p y y p g g
be stressed, but also the need to validate the system with users. Among the project management tools
risk analysis, earned value measures and tracking of requirements completion will be presented.
Monitoring progress with reviews and the possible impact on completion dates will also be discussed.

ALMA Software Project Highlights
ALMA software is an end-to-end system:

Proposal and observing preparation
Dynamic scheduling
Instrument control
Data archiving
Automatic and manual data processing
Support for operations

Developers are distributed:
Over 4 continents and 15 locations.
Ab t 80 l ft d l t d t ti

Makes large distributed projects manageable and maintainable
.. But requires team discipline and managerial support
And learning (yearly ACS courses in our case)

Incremental Releases at fixed dates (vs. fixed content) twice/year
Software is developed incrementally in 6 monthly steps
Easier integration, predictable dates for the rest of the project
Releases are an integrated e2e system
Patches (typically one per 6 month development cycle) allow to upgrade a few
computing subsystems
Planning work is for 6 months and can be tuned to accommodate project
priorities
Give priority to testing and making releases over development when deadlines
approach

About 80 people on software development and testing
Size over 2000 kLines of specially developed source code (so far). >75%

complete.
In use for commissioning of ALMA observatory

Cross-subsystem Function Based Teams (FBTs) (~3 months)
Implement important functionality reducing impact of changing interfaces
Make integration easier, as inter-subsystem issues get sorted out continuously.
Integrations are more frequent, which is important with a geographically
distributed team

Integration tests (by independent team)
In addition to subsystem tests (build-in test time up front)
Regression tests, eventually mostly automatic
Require good test models (several computers)
… but cannot replace tests with real hardware
defend towards the rest of the project the need for significant test time on the
system to discover/fix issues before software gets used

Lines of code by Computing subsystem
at Release 7.0 (oct.2009)

Distributed Team Management (Most important: Wiki, CVS, regular telecons, face to
face meetings)

Project Management Aspects

Operator User Interface

system, to discover/fix issues before software gets used
.. You will get anyway criticism later and it will be your problem if you did not
follow your procedures

The ALMA software is in regular use at the ALMA Observatory since more than a year
(having been previously tested on prototype antennas)
and keeps being incrementally updated at every new Release.

Problem reporting (JIRA in our case)
Important to track bugs/improvement

request
JIRA is good. Whatever the system,

follow up is even more important
We have a weekly meeting to discuss

issues and flag blocking ones
Have a fallback release available for

use, in case of major problemsg)
Requirement and tracking progress
Use of a development framework: ALMA Common Software (ACS) (#)

Software written with ACS implicitly uses its architecture. This is good for distributed
development to maintain consistency between different developers.

Releases at fixed dates and Planning
Temporary cross-subsystem teams
Integrated regression tests by an independent team

And user tests (both stand-alone and on integrated system)
Project management tools: risk analysis, earned value measures
Reviews to monitor progress: Internal and External
Problem reporting (JIRA system)

Observation Preparation:
Spatial Editor
(used to prepare a mosaic of

Project management tools:
Risk analysis helps project to assess

software risks
Earned Value (apart from Requirements

tracking) was difficult for us to apply in a
meaningful way

Reviews to monitor progress:
Internal reviews , like Releases, are

incremental. This allows incremental
design and adjustment of priorities
External reviews are good.

They require preparation and thinking
and result in obtaining comments that
help in the remaining work.(used to prepare a mosaic of

observations – UK ATC/ESO)

ALMA antenna moving up to the high
site (5000m).

ALMA base camp (3000m) in the
background.

(#) Based on the container-component
paradigm and using CORBA. The
system allows the use of C++, JAVA and
Python on Linux operating systems.

For more information on the ALMA
Common Software see poster and

Tests (shown here) are done on
computer test environments.

Atacama Large Millimeter/Atacama Large Millimeter/SubmillimeterSubmillimeter Array Array

As the managers of the bilateral part of the ALMA Computing team we are proud to acknowledge the
dedication of the ALMA Computing staff at ESO, NAOJ, NRAO and other Institutes around the world,
who are doing a great job developing and supporting the software for ALMA.

Acknowledgments (*) graffi@eso.org

Common Software see poster and
paper:

p
Final tests at the Observatory.

–TUP101 ALMA Common Software (ACS), status and development by G. Chiozzi
(ESO) et al.
–WEA006 Data Distribution Service as an alternative to CORBA Notify Service for the
ALMA Common Software by G. Chiozzi (ESO) et al.

