
FESA 3.0: OVERCOMING THE XML/RDBMS IMPEDANCE MISMATCH

M. Peryt, M. Martín Márquez, CERN, Geneva, Switzerland

Abstract
The Front End System Architecture (FESA) framework

developed at CERN takes an XML-centric approach to
modelling accelerator equipment software. Among other
techniques, XML Schema is used for abstract model
validation, while XSLT drives the generation of code. At
the same time all the information generated and used by
the FESA framework is just a relatively small subset of a
much wider realm of Controls Configuration data stored
in a dedicated database and represented as a sophisticated
relational model. Some data transformations occur in the
XML universe, while others are handled by the database,
depending on which technology is a better fit for the task
at hand. This paper describes our approach to dealing
with what we call the “XML/Relational impedance
mismatch” – by analogy to Object/Relational impedance
mismatch – that is how to best leverage the power of an
RDBMS as a back-end for an XML-driven framework.
We discuss which techniques work best for us, what to
avoid, where the potential pitfalls lie. All this is based on
several years of experience with a living system used to
control the world’s biggest accelerator complex.

INTRODUCTION
The Front-End Software Architecture (FESA) [1]

framework is a comprehensive environment covering all
aspects of the development of real-time control software
for front-end computers. Through a mix of modelling
techniques, automatic code generation and custom code
the equipment specialist can quickly develop, test and
deploy software for accelerator devices. The XML
technologies are the cornerstone of FESA approach and
are used at every single stage of its workflow [2].

The CERN accelerator complex control systems are
fully data-driven thanks to the Controls Configuration
Database (CCDB). Its elaborate relational schema and
supporting tools allow configuring all layers of the
accelerator controls: from the top-level graphical tools
used by the control room operators, through the
middleware down to the hardware drivers and front-end
computer start-up sequences.

The FESA project was launched in 2003. Since then it
went through many iterations. The current production
release is version 2.10, while new major redesign FESA
3.0 is in the works and scheduled for release in late 2009.

The CCDB has a much longer history dating back to
the early 1990s. It has gone through countless iterations
but has always used Oracle® RDBMS and the suite of
tools and technologies provided by this vendor.

The following sections describe the intricate
relationships of FESA and CCDB, the challenges posed
by the use of XML and relational technology stacks and
the solutions employed to make them work together.

FESA/CCDB WORKFLOW

Figure 1: FESA workflow until version 2.10

When an equipment specialist starts the process of
modelling the behaviour of a hardware device in software
terms, he needs to create a device class model describing
the interface of the device, its run time behaviour and
internal state. The model is materialised as an XML file
that is validated against a static XML schema. The file is
saved in the CCDB where additional processing takes
place: the information from the XML document is
shredded and distributed over a set of relational tables,
and the existing devices (if any) of the device class in
question are updated to match the new incarnation of the
model (this process is known as device promotion). In the
second phase the device classes are deployed on front-end
computers. This is achieved by adding an element to an
XML file validated against an XML Schema that is
generated dynamically by an XSL transformation based
on the directory of all available device classes provided
by CCDB. The resulting XML file is also saved into the
CCDB. In the third phase the device instances are created
or updated. They are also modelled as XML documents
compliant with yet another dynamically generated XML
Schema. The XSL template used to generate this schema
uses as its input the device class model created in step 1
augmented by other pieces of information coming from
the CCDB, e.g. information on accelerator timing events.

The above demonstrates that FESA and CCDB are
indeed very closely coupled and it is crucial to provide
mechanisms ensuring the seamless integration of the two
worlds.

.

WEP007 Proceedings of ICALEPCS2009, Kobe, Japan

Data and Information management

420

CONTEXT
The CCDB is not just a simple repository for FESA

data; otherwise file system storage would have been
sufficient. The information coming from FESA is only a
small fraction of overall data managed by CCDB.

FESA devices are just one of several device types
supported by CCDB (device names must be unique
CERN-wide across all domains). CCDB makes FESA
data available to external federated databases [3],
augments it with additional information that is exploited
by control room applications (device grouping, references
and archives, meta-properties – properties that describe
properties – for configuring GUIs), ensures the proper
initialisation of FESA processes as part of front-end start-
up sequences. In addition, CCDB provides much stronger
system-wide coherency checks beyond local validations
ensured by XML Schema in the FESA domain. Obviously
this puts additional constraints on data that FESA
produces (e.g. device name uniqueness).

CHALLENGES
It is beyond the scope of this paper to discuss all

possible solutions to the issue of XML/RDBMS
impedance mismatch, but a few important problems are
worth mentioning.

It is well known that XML and relational data models
are not fundamentally compatible [4]. The XML is semi-
structured, nested, hierarchical, polymorphic, and is in
some cases based on varying XML Schema (the schema
differs within the same class of documents that are
validated against it). The relational data model on the
other hand is highly structured, normalised, coherent and
flat. Other XML features that map poorly to relational
model include unbounded strings, variability (a parent
element can have different kinds of children), and ordered
polymorphic sequences (relational table rows are
unordered unless explicitly sorted by a key and are not
polymorphic).

In spite of that CCDB must provide means of saving
and then restoring XML documents without altering their
format. Internally it must parse and shred these
documents and put atomic data elements into individual
relational tables. These actions may trigger further data
management events, such as device instance promotion.
The database is also responsible for generating dynamic
in-memory XML Schema documents out of information
stored in the relational schema. FESA data must be
updatable not only through dedicated tools, but also
through general purpose database mechanisms. Between
save and restore operations, data may be updated through
CCDB specific mechanisms, outside of FESA realm.

SOLUTIONS
In order to interface an XML application to a relational

database one needs to provide an XML Processor acting
as an interface between the two. This can be done in
several ways:

• Embedded into the XML application as a library.

• Deployed as a middleware component on an
application server.

• Coded as stored procedures inside RDBMS.
Up until FESA 2.10 the FESA/CCDB interface was

provided in the form of a Java API (scenario 1), but for
FESA 3.0 all functionality is going to be transferred
inside database (scenario 3). Only a very thin Java adapter
is left to integrate with the Java FESA tools.

Several representations are possible to store XML
documents in a relational database. One is CLOB
representation – the XML strings are stored as such in
Character Large OBject columns. An alternative option is
composed representation whereby an XML document is
parsed and shredded in order to put individual values into
database columns based on primitive data types. The
hybrid approach is also possible where some fragments of
an XML document are shredded while others are stored as
CLOBs. CLOB representation enables easy storage and
retrieval but is inefficient when it comes to querying or
updating. Conversely, a composed representation requires
a significant effort when shredding XML documents
based on complex or variable XML schemas, but it is
trivial to manipulate data through DML statements.

Initial Implementation
In the early days of FESA project, the system was

undergoing constant evolution. It went through more than
100 iterations in less than 2 years and most of them
affected the specifications of the XML/CCDB contract. In
the same period CCDB data model was also undergoing
fundamental changes due to strategic choices for data
management in accelerator controls.

Under these circumstances the only option was to use
the CLOB representation augmented with very limited
decomposition. Only the device class names, version
numbers and front-end computer names were extracted
and put into individual columns. Some rudimentary
directory services were provided by the API to return
them to the client applications.

Over the several subsequent releases of FESA an
independent schema of FESA-specific relational tables
was incrementally designed and created. It was fed with
data resulting from partial XML shredding, loosely
coupled with the core CCDB schema (no relational
constraints, asynchronous synchronisation through
database procedures); in parallel all XML documents
were still stored as CLOB values for efficient retrieval by
FESA tools without any loss of information. Due to the
use of DOM (Document Object Model) parsing and
XPath queries the performance of document saving left
much to be desired. However, it was difficult to use the
faster SAX (Simple API for XML) sequential parsing
because the order in which information was stored in the
XML files was not compatible with the required order of
insertion to the database tables. On top of that the
necessity of keeping the CLOB and composed
representations in sync when performing updates from
within CCDB was also tedious. A special XMLDB SQL
syntax was used in order to update XML documents

Proceedings of ICALEPCS2009, Kobe, Japan WEP007

Data and Information management

421

inside database. This proved to be complicated and
inefficient from the performance point of view. The
problem worsened with the wide acceptance of FESA and
the increasing number of operationally deployed devices.
Each modification of a device class would trigger the
update of all dependent devices, which could mean
reading out, updating and writing back tens or hundreds
of small XML files.

Current Evolution
FESA 3.0 brings a big paradigm shift in the

relationship between the framework and CCDB. The
framework becomes decoupled from the CCDB until a
developer decides to deliver his device classes into the
operational environment. The responsibility for handling
the deployment and instantiation of devices is taken up by
the CCDB, while FESA class design is handled by an
Eclipse IDE plug-in.

Figure 2: FESA 3.0 workflow.

The CCDB team took advantage of this opportunity to
completely rethink the architecture of the FESA/CCDB
XML processor. The CLOB representation was dropped
in favour of the composed approach, for which the FESA
part of the database schema was completely redone. The
comprehensive suite of XML technologies integrated into
Oracle 10g (XML DB) made it possible to move the
XML processor inside database server.

For shredding the XML documents the choice was
between two options:

• Register the XML Schema documents with the
database, use the automatic shredding mechanism
provided by XML DB, redistribute data from the
resulting object relational tables into plain relational
ones.

• Transform FESA XML files into Oracle canonical
XML format using XSL transformations. The
canonical format can be directly loaded into target
tables using the supplied package
DBMS_XMLSTORE.

The second option was preferred because the XML
Schema documents for the deployment and instantiation
data are generated dynamically and as such they are
variable. Consequently, XSL stylesheets needed to be
developed for all types of FESA XML. The choice for
recomposing the FESA XML documents was between:

• Extracting canonical XML, piping it through XSL.
• Using SQL functions based on the SQL/XML

standard, and some occasional XSL processing.
In terms of functionality and performance both

solutions were deemed equivalent, and the development
effort involved was similar. We decided to go for the
second option because no additional XLS step was
required in the case of recomposing the device class
design XML documents. For the instantiation and
deployment documents the limitation of SQL/XML
specification had to be dealt with, as it does not allow for
dynamic XML element names. To overcome this issue,
intermediate XML documents are produced transformed
with trivial XSL stylesheets to the final format.

FUTURE WORK
The work for FESA 3.0 is still in progress and all

specifications are not frozen at the time of writing.
Although the major part of code for XML processor is
already developed, it will inevitably go through several
iterations until it will be released. However, we are
confident about our choice of technology stack.

CONCLUSION
Although FESA 2.10 is a production system that is

widely adopted at CERN and beyond (GSI in Darmstadt),
we can consider the road that has been covered until and
including this version a learning process. When the
development started the XML technologies were still
considered to be emerging and the subject of
XML/Relational mapping was not very well explored. On
the RDBMS side, the support for XML was also evolving
at a rapid pace.

The FESA data management was rethought and re-
implemented. The technological choices for FESA 3.0
XML Processor, biased towards Oracle® solutions, are
fully in line with the strategy in place for the CERN
accelerator controls. Inevitably, these implementations are
difficult to export to other environments.

REFERENCES
[1] M. Arruat et al., “Front-End Software Architecture”,

ICALEPCS’07, Knoxville, USA, October 2007,
WOPA04, p. 310 (2007)*.

[2] M. Arruat et al., “Use of XML Technologies for
Data-Driven Accelerator Controls”, ICALEPCS’05,
Geneva, Switzerland, October 2005, PO2.094-5
(2005)*.

[3] R. Billen et al., “Accelerator Data Foundation: How
It All Fits Together”, ICALEPCS’09, Kobe, Japan,
October 2009, TUB001.

[4] D. Draper, “Mapping between XML and Relational
Data”, article at http://www.informit.com/

*
 Published at the Joint Accelerator Conferences Website (JACoW)

http://www.JACoW.org

WEP007 Proceedings of ICALEPCS2009, Kobe, Japan

Data and Information management

422

