
A PULSE-PATTERN GENERATOR USING LABVIEW FPGA

D. Beck, H. Brand, H. Hahn, F. Herfurth, S. Koszudowski, GSI Helmholtzzentrum für
Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany

G. Marx, L. Schweikhard, F. Ziegler, Institut für Physik, Ernst-Moritz-Arndt-Universität, D-17487
Greifswald, Germany

Abstract
A pulse-pattern generator produces bit patterns at user

specified times. It can be used to control the timing of
experimental procedures - each bit is used as a trigger line
for external devices like a switch-able power supply. The
development was initiated by the need of ion trap
facilities [1]. Typically, such a facility has about three
traps. The experimental procedure requires repeating
many times a complex sequence of a few seconds
duration with about 30 steps with a precision of 100 ns.
The sequence must be synchronized to external events
like the timing structure of an accelerator. As a solution, a
FPGA card from National Instruments is used. The
LabVIEW FPGA module translates the graphical code to
VHDL, which is processed further by the tool chain of the
FPGA manufacturer Xilinx. Presently, this solution is
used at six different experiments at four institutes.

INTRODUCTION
Typical experiments in nuclear and high energy physics

have sophisticated data acquisition systems with a large
number of channels and event rates on the one hand. On
the other hand, the requirements on the slow control
system to adjust experimental parameters like high
voltages or gas flow are fairly relaxed. For experiments
using ion traps, like SHIPTRAP [2], HITRAP [3],
ISOLTRAP [4] or ClusterTrap [5], the situation is
reversed. While data acquisition is fairly simple, the use
of single ions in vacuum requires active manipulation of
electromagnetic fields in fast real-time. A simplified
sketch of a part of the experimental procedure is depicted
in Fig. 1. Shown is a sequence of steps that is called a
cycle. First, the ions to be investigated are produced by
nuclear reactions or, in case of stable species, might be
obtained by using pulsed laser beams.

ACCUMULATION

COOLING

EXTRACTION, DETECTION

EXTRACTION &PULSED CAVITY

PREPARATION TRAP

RFQ - BUNCHER

CAPTURE

COOLING STEP 1

RF MANIPULATION 1

RF MANIPULATION 2

COOLING STEP 4

EXTRACTION

MEASUREMENT TRAP

CAPTURE

RF MANIPULATION 3

COOLING STEP 2

COOLING STEP 3

(1)

(15)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(13)

(12)

(11)

(10)

PRODUCTION

PROTON OR LASER PULSE

MANIPULATION IN GAS-CELL

(16)

(14)

~ 10 ms

1 s or 10 msμ

80 ms

100 ms

50 ms

50 ms

50 ms

300 ms

900 ms

10 ms

Figure 1: Simplified sketch of an experimental cycle (see text) of a typical trap experiment. The different steps must be
synchronized with sub-microsecond precision.

Proceedings of ICALEPCS2009, Kobe, Japan TUP058

Reconfigurable Hardware

215

In some cases, the ions are produced at high energies
and must be slowed down using a gas cell [6], before they
can be caught in a gas-filled radio-frequency quadrupole
(RFQ) buncher. Besides being a first cooling stage, the
prime task of such a buncher is to produce a well defined
bunch of ions with a phase-space volume of a few eVμs.
Such a bunch can be transferred into a preparation trap
that serves for further cooling. Typically, a mass selective
cooling technique, requiring damping and radio-
frequency (rf)-manipulation, is applied to isolate a few
ions of interest from a background of unwanted species.
The ions are transferred as a cooled bunch to the
measurement trap. Depending on the experiment, such a
cycle may take a few hundred ms to a few seconds.
During an experiment, a cycle is repeated while changing
a parameter between cycles. An example is a mass
determination that can be performed by measuring the
true cyclotron frequency of stored ions with ISOLTRAP
[4]. This is accomplished by measuring an ion signal as a
function of the frequency of a rf-field applied in the
measurement trap, see Fig. 2.

-3 -2 -1 0 1 2 3 4
60

62

64

66

68

70

72

74

M
ea

n
tim

e
of

 fl
ig

ht
 /

μs

Excitation freqeuncy - 1266787 / Hz

85Rb+

Figure 2: Ion cyclotron resonance using a time-of-flight
detection method [4]. The solid line represents a fit of the
expected line-shape to the data points.

The steps of a cycle might be changed frequently.
Moreover, some of them must be synchronized with sub-
microsecond precision either consecutively or triggered
by external signals. This is the task of a pulse-pattern
generator that produces trigger signals for switch-able
power supplies and rf-generators.

REQUIREMENTS
For typical trap experiments 64 digital outputs for

device triggering are sufficient. Thus, the pulse-pattern
generator should produce bit patterns with a width of 64
bit. Each pattern is applied for a time specified by the
experimentalist. When transferring ion bunches between
traps, it is required to control the timing with a precision
in the order of 10 ns. The same precision is required when
ions need to be ejected or captured with a fixed phase
correlation to rf-fields that have frequencies up to a few
MHz, depending on the mass-to-charge ratio of the ions.

Conditional execution of pattern generation must be
possible at every moment depending on the experimental
procedure. This is important for synchronization to
external signals like laser-pulses or the timing structure of
the accelerator that is involved in the ion production. Up
to eight digital inputs are sufficient and allow up to 255
different trigger conditions. Another feature is the
repetition of certain steps within one cycle in a loop. As
an example, this allows accumulating many bunches from
the RFQ-buncher in the preparation trap prior to the
actual preparation. Furthermore, it must be possible to
change the time of individual patterns without re-loading
a whole sequence of patterns. This feature allows
measuring experimental parameters as a function of time,
which is especially important for tuning the experimental-
setup during the preparatory phase of a beam-time.
Precision experiments often compare a property of a
particle to another particle that is well known. As an
example, the mass of a radioactive nuclide is measured
relative to the mass of 12C, the atomic mass standard.
Different nuclides may require different timing schemes.
Thus, it must be possible to quickly change the
experimental procedure between cycles. This is similar to
the fast context switching applied at the GSI accelerator
(virtual accelerator concept).

The pulse-pattern generator is intended for trap and
similar experiments. These experiments are small and not
distributed over buildings or whole sites. This has two
consequences. First, a distributed timing system is not
required, i.e. a single pattern generator is sufficient.
Second, such experiments rarely have staff specialized for
the control system only. Thus, the solution must be simple
and should be based on hard- and software commercially
available.

SOLUTION PATH
The solution presented here is based on a

reconfigurable input/output (RIO) 7811R card from
National Instruments. This card has a Field
Programmable Gate Array (FPGA), embedded RAM as
well as a PCI or a PCI eXtensions for Instrumentation
(PXI) interface. This card can be integrated into a
LabVIEW environment. The FPGA, a Virtex-II V1000,
can be programmed by using the LabVIEW FPGA-
module, which creates VHDL code from the graphical
code programmed by the developer. The VHDL code is
then transferred to the tool chain of the FPGA
manufacturer Xilinx, which creates a bitfile that is finally
uploaded to the FPGA. The FPGA-module allows
communication between normal LabVIEW programs on a
host PC and the FPGA code during run-time. Out of 160
digital I/O lines, 64 lines are used for pattern output.
Eight lines are used for trigger inputs. A few additional
output lines allow monitoring and debugging.

FPGA
The main idea is the following: Commands and their

parameters are uploaded to the on-board memory of the

TUP058 Proceedings of ICALEPCS2009, Kobe, Japan

Reconfigurable Hardware

216

FPGA card via Direct Memory Access (DMA) transfer.
Four different commands are implemented.

• $time: A 64-bit pattern is applied to the output lines
for a specified time by counting FPGA-clock-ticks.

• $wait: A 64-bit pattern is written to the output lines.
No further processing is done until a specified trigger
condition is detected on the eight input lines.

• $jump: Command used for implementing loops.
• $stop: Last command for a sequence of patterns. This

can be used to separate multiple sequences of
patterns and is required for fast context switching
(see Sect. REQUIREMENTS).

Two different clock domains are used. Some part of the
FPGA is clocked with a 40 MHz reference clock.
However, the actual pattern generation is performed
within a so-called single-cycle loop that is operated at
80 MHz. A FIFO is required to transfer data between the
two clock domains. When the FPGA starts execution, the
commands are copied from the onboard memory to a
first-in-first-out (FIFO) buffer. The FIFO is emptied by
the single-cycle loop that does the final processing of the
commands.

The operation of the FPGA is controlled by a simple
state machine supporting the following states.

• idle: Default state, waiting for commands from the
host PC.

• reset: Clear onboard memory.
• query: Query information from the onboard memory.
• load: Load new data to the onboard memory.
• run: Start copying of data from the onboard memory

to the FIFO and start processing the commands in the
single-cycle loop.

The states reset, query, load and run can only be
accessed from the idle state and return to the idle state
after executing the entry, do, and exit actions of a state.
Error conditions are handled by the idle state, which then
transfers error messages to the host PC.

Host PC
Dedicated LabVIEW code that is part of the FPGA-

module allows communicating with the FPGA target from
a host PC. Although using that code is in principle
straight forward, implementation details are hidden by
encapsulating the direct communication with the FPGA
target. This is achieved by the implementation of an
instrument driver according to the Instrument Driver
Guidelines [7]. An instrument driver defines a well
defined Application Programming Interface (API) that
can be used from an application program without any
knowledge about FPGA programming.

STATUS
A first version of both the FPGA and LabVIEW code

on the host has been developed by two authors of this
paper, F. Ziegler and S. Koszudowski. It is in production
since about three years at six different experiments [2-
5,8,9]. The original requirements have been refined
further as presented in this paper, and small parts of the

code have been adapted accordingly. The code is GPL
licensed. The solution presented here has been developed
on the "smallest" RIO card produced by National
Instruments. The code can easily be compiled for larger
or faster FPGAs and is not restricted to the 7811R card. If
required, the FPGA clock can be linked to an external
timebase, which is available if the RIO card is used on a
PXI platform.

APPENDIX
Note that the 7811R provides only TTL signals for

output. However, some laboratory devices require higher
currents for their trigger inputs and a TTL line-driver has
been developed, see Fig. 3. The line-driver module is
built as 19" crate providing up to 160 output lines. Each
output line provides a 100 mA output current at 5 V with
a rise-time of 15 ns.

Figure 3: TTL line-driver module. Channels 0-31 are used
for 32 output lines. Channel 32-39 are eight input lines
for conditional triggering. A second module is required
for using all 64 output lines and monitor signals.

REFERENCES
[1] F. Herfurth, Int. J. Mod. Phys. E 18, 2 (2009) 392-

404.
[2] M. Block et al., EPJ D 45 (2007) 39-45.
[3] H.-J. Kluge et al., Adv. Quant. Chem. 53 (2008) 83-

98.
[4] M. Mukherjee et al,. Eur. Phys. J. A 35 (2008) 1-29.
[5] L. Schweikhard et al., Eur. Phys. J. D 9 (1999) 15-20.
[6] J.B. Neumayr et al., Nucl. Instrum. Meth. 244 (2006)

489-500.
[7] National Instruments, Instrument Driver Guidelines,

http://www.ni.com/idnet.
[8] V.S. Kolhinen et al., Nucl. Instrum. Meth. B 266

(2008) 4547–4550.
[9] J. Ketelaer et al., Nucl. Instrum. Meth. A 594 (2008)

162–177.

Proceedings of ICALEPCS2009, Kobe, Japan TUP058

Reconfigurable Hardware

217

