
CPP/CXML - A HOST-BASED SEQUENCER FOR EPICS

P. Gurd, R. Keitel,
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

Abstract
The EPICS-based control system of the ISAC (Isotope

Separation and ACceleration) Radioactive Beam Facility
uses cppe, a host-based sequencer. cppe was adapted from
a previous application and uses its own simple sequencing
language. This paper describes CPP/CXML, a
replacement for cppe, which was implemented as a Perl
module on top of the EPICS CA Perl module.
CPP/CXML retains important features of cppe, such as
process variable declarations, connection checks and
cleanup on abort. In addition it leverages the full
capabilities of the Perl language and incorporates a state
machine processor. Sequences can be executed either in
Perl using the Perl procedural API or by defining a state
machine using XML.

INTRODUCTION
ISAC [1] the Radioactive Beam Facility at TRIUMF

[2] consists of several linear accelerators, which produce
beams of short-lived radioactive isotopes by bombarding
suitable targets with protons from the TRIUMF 500 MeV
cyclotron. Approximately 4000 ISAC devices are
controlled by an EPICS based control system [3]. For
more than ten years, a host based sequencer cppe has been
used for

• Rapid prototyping of slow control
algorithms.

• Replacing repetitive operator actions
• Replaying operator actions captured by a

macro facility.

 This paper describes CPP and CXML, a new set of
Perl modules developed for the ISAC control system as a
cppe replacement.

cppe

The present system cppe (Command Procedure

Processor for EPICS) [4] [5] is a host-based sequencer
written in the C language, which was developed for
earlier control systems at TRIUMF and was ported to the
EPICS environment. Input files for cppe are written in a
cppe-specific procedural language. Some features of
cppe:

• All variables used, including EPICS process
variables (PVs), must be declared before execution
starts.

• Input files must pass a syntax check for execution to
continue.

• The cppe language provides flow and timing controls
based on logical and arithmetic conditions.

• cppe allows macro substitution from command line
parameters.

• Procedure locking, abort, and message reporting
must be explicitly handled by the procedure designer.

Examples of cppe use in the ISAC control system

include ramping of power supplies with user-specified
parameters, pumping down beam lines, and synchronized
heating of the ISAC targets.

Macro Facility
cppe is also used as part of the ISAC macro facility,

which allows the capture of operator actions. A Perl tool
extracts operator commands from the EPICS Channel
Access put log and generates a procedure file, which can
be used for timed replay by cppe or as a starting point for
developing a more sophisticated procedure.

WHY MOVE TO PERL?
cppe has been a successful component of the ISAC

control system. The release by the EPICS community of
CA.pm, a channel access client Perl module [6], however,
provided a welcome opportunity for developing a
replacement. Perl is already used as the standard scripting
language of the ISAC control system and provides much
more capability than the simple cppe language. In
addition, switching from cppe to Perl removes one
language from the required core competencies of an ISAC
control system programmer.

CPP
CPP.pm is a package of Perl routines that implements

an application programming interface (API) for
procedural host-based sequences. It provides a wrapper
around the CA.pm package which encapsulates desired
core functionality, so that the sequence designer is not
distracted by housekeeping chores and can focus on
developing the desired sequence. The CPP.pm module
retains important cppe functionality, such as process
variable declarations, initial connection checks and
cleanup on abort, but improves on cppe by full connection
handling and aborting of a procedure if any PV
disconnects subsequently. The package provides routines
to get data from PVs, send data to PVs, delay procedures
and test conditions. The package defines standard
methods for operator abort, status reporting, procedure
locking, synchronizing and exclusion. It allows
parameterized common routines and improves on cppe’s
cleanup mechanism by providing a way to register a
cleanup procedure. CPP.pm provides functions for

Proceedings of ICALEPCS2009, Kobe, Japan TUP038

Operational Tools

173

parameter definition, flow control, and PV access. The
CPP.pm API functions are listed in the remainder of this
section.

 Procedure parameters are defined using the
decodeCommandLine and substituteMacros functions.

 In addition to the standard Perl language constructs,
procedure flow is controlled by the startExecution,
abortProcedure, registerCleanup, registerAbort, cppSleep
and exitProcedure functions. In particular, the
startExecution function allows the declaring of PVs for
procedure locking, procedure aborting and reporting of
status messages. The setSleep and setWait functions
control the behaviour of the PV functions that follow. The
waitFor function controls program flow based on a PV
value.

connectPVs creates channel access connections and
monitors for the PVs used by the PV access functions
getPVString, getPVDouble, evalCondition, setPVString,
setPVDouble and stepPVDouble.

Messaging functions are reportMessage, which sends a
message to the message PV and abortMessage, which
defines a message to report a procedure abort.

Operator Interface Examples

For a consistent operator interface, a generic screen for

the EPICS extensible display manager (edm) was
developed (see Fig. 1), which can be used by any
CPP.pm procedure that includes the abort, lock and report
control process variables.

Application Examples

CPP.pm has been deployed successfully in replacing the

cppe procedures for setting the ISAC mass separator
magnetic fields, heating the ISAC East and West targets
(see Fig. 2) and conditioning of the DRAGON (Detector
of Recoils And Gammas Of Nuclear reactions)
electrostatic dipoles high voltage.

Experience and Future Directions

The CA.pm Perl module was easy to install and use.

Initially there were problems encountered with the last

few channel access operations after a procedure was
aborted. Those problems were solved with help from the
CA.pm author.

At present we continue to replace cppe procedures with
the goal of phasing out cppe by end of the year. This
requires recreating the macro facility, i.e. to create CPP
procedures from captured caPutLog files.

CXML
Whereas CPP.pm implements an API for procedural

sequences, CXML executes a State Machine defined in an
XML document. An XML definition developed for
telephony - State Chart XML (SCXML): State Machine
Notation for Control Abstraction [7] - was modified for
controls applications. CXML provides a collection of
Perl packages that automatically produce edm screens and
database files to support the XML-defined state machine.
The state machine can be run either at the host level in
Perl using the CPP.pm package with Perl/Tk for optional
display, or it can run on an IOC as an EPICS state
notation language (SNL) sequence.

Figure 3 shows how CXML is used to produce supporting
EPICS databases, edm display screens, and SNL code, or
to run in Perl using CPP.pm. Fig. 4 shows a fragment of

Figure 1: Generic CPP control screen.

Figure 2: Target synchronized heater control.

TUP038 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

174

an XML specification of a state machine. Fig. 5 shows a
generated edm screen, which displays the execution of the
state machine.

CXML Database

A <definition> entity was added to the SCXML

specification to allow creation of an EPICS database to
support the state machine. PVs that may be needed
include abort, start, lock and message PVs as well as
other support PVs for the state machine such as limits,
step sizes and wait times. Latches can be defined to catch
momentary conditions. The database can include
parameters for efficient reuse and standardization of code.

CXML Application Examples

CXML has been deployed at TRIUMF in three test

areas: the laser ion source, the ion source test stand and
the target preparation (evaporator) stations. In all three
source test areas, EPICS SNL sequences were created
using CXML to ramp up the two heaters of the source in
tandem while checking the vacuum. In the laser ion
source, sequences were also created to ramp the bias

voltage up and down while checking the vacuum
readings.

CXML Outlook

At present, the ISAC production control system does
not use any SNL sequences. Given the successful
deployment of the test system examples, this could be
revisited in the light of future requirements. A visual
state machine editor, possibly integrated with the EPICS
database tool, would help making the case for including
state machines.

REFERENCES
[1] http://www.triumf.ca/about-triumf/triumf-faq/isac-

backgrounder.
[2] http://www.triumf.ca/about-triumf/triumf-faq/triumf-

backgrounder.
[3] R. Keitel, D. Bishop, M. Leross, R. Nussbaumer, C.

Payne, K. Pelzer, J. Richards, W. Roberts, E.
Tikhomolov, G. Waters, “ISAC Control System
Update”, ICALEPCS07, Knoxville.

[4] R. Keitel, D. Bishop, D. Dale, H. Hui, S. Kadantsev,
M. Leross, R. Nussbaumer, J. Richards,
E. Tikhomolov, G. Waters, “Status Update on the
ISAC Control System”, ICALEPCS01, San Jose.

[5] cppe manual, http://isacwserv.triumf.ca/isac/pubdoc/
 cppe/CPPEPICS.DOC.
[6] CA - Perl 5 interface to EPICS Channel Access,

http://www.aps.anl.gov/epics/base/R3-14/11-docs/
CA.html.

[7] State Machine Notation for Control Abstraction
(http://www.w3.org/TR/scxml).

Figure 3: CXML options.

Figure 4: Fragment of CXML state machine definition.

Figure 5: State machine display.

Proceedings of ICALEPCS2009, Kobe, Japan TUP038

Operational Tools

175

