TUP029

Proceedings of ICALEPCS2009, Kobe, Japan

KSTAR WIDGET TOOLKIT USING QT LIBRARY FOR THE EPICS-
BASED CONTROL SYSTEM

S. Baek, S. Lee, M.K. Park, H.K. Na, and M. Kwon,
NFRI, 113 Kwahangno, Yuseong-gu, Daejeon, 305-333, KOREA

Abstract

The KSTAR Widget Toolkit (KWT) was developed as a
development toolkit of channel access (CA) client
application for the KSTAR commissioning. The KWT is
based on Qt library and includes channel access interface
to communicate with EPICS. In order to enhance
development speed and increase aesthetic quality of
application, 18 plug-in widgets were developed to enable
for developers to create new panel using drag and drop
method. Some of them use QWT as a plotting library and
some widgets display alarm status with a specified color
according to the EPICS alarm convention. The KWT has
cross-platform development environment and feasibility
of extending new widgets using Qt plug-in APl with
plenty of documents and tutorials. Around 120 panels and
several applications such as multi-channel plotting tool,
process variable searching tool, and logbook application
were developed through the KWT and they proved
functionality of the KWT being used for the integrated
control and machine control during the KSTAR
commissioning. The KWT is applicable to fast and easy
development of operator interfaces and applications for
the EPICS-based control system.

INTRODUCTION

The KWT was developed as a development toolkit of
Experimental Physics and Industrial Control System
(EPICS [1]) CA client application for the Korea
Superconducting Tokamak Advanced Research (KSTAR
[2]) commissioning. It’s Qt widget library which includes

Qt-CA (Channel Access) interface and 18 plug-in widgets.

CA is the software component that allows a Channel
Access client application to access control-system data
which may be located on different hosts throughout a
network [3]. This paper explains the principal of KWT
and application of it. We assume that readers are familiar
with EPICS.

DEVELOPMENT STATUS

Items listed below show the requirements for the
KSTAR Operator Interfaces (OPIs) or the development
toolkit of them.

e Performance
Stable EPICS CA communication
Easy & fast development
Maintenance
Usability

¢ Consistency of appearance

Qt was selected as a graphic library to develop KSTAR
OPI development toolkit because of its plug-in property,

Operational Tools

146

cross-platform development environment, good
appearance, abundant documents, and flexible license
policy.

Features of KWT Library

KWT inherits the features listed below from Qt library.
Regarding to the portability, it uses Qt cross-platform
development environment but Qt-CA interface was not
fully tested on platforms except linux. For the integrated
development tools, it’s possible to use Qt designer, which
is a Qt cross-platform integrated development
environment (IDE), to make OPI panels because KWT
widgets were designed as custom plug-in widgets for it.
o Intuitive C++ class library
e Portability across desktop and embedded operating
systems
e Integrated development tools with cross-platform
IDE
e High runtime performance and small footprint on
embedded [4]

Inheritance Hierarchy of Library Properties

KWT libraries depend on Qt-4.3.2 and some plotting
widgets among them inherit properties from QWT
libraries. In addition, to communicate with EPICS, Qt-CA
library in KWT interfaces with EPICS base-3.4.18.2.
Some classes use boost library as a Standard Template
Library support package. The libraries listed below are
prerequisite libraries for the KWT installation and
inheritance hierarchy of the KWT is shown in Fig. 1 in
detail.

e Qt-4.3.2

e QWT-5.0.0rcl

e EPICS base-3.14.8.2

e Boost library

.E-.R!Q§__fi
ChannelAccessThr KWT

LA AttachChannelAccess

1 CAUITime
1 _CADisplayer
1 CABoButton

QWidget 4‘ CAImageMbbi

StaticGraphic |<—‘ CAGraphic

CALabel

CAWclock

QPushButton | CAPushButton
CACheckb
QCheckBox EGRDOX

CAColorCheckbox

'{ QLineEdit l<—{ CALineEdit

| SinglePlot |
t)@E CAMuIt!plm |
{ QWT ; | CAMultiwaveplot |

Figure 1: Inheritance hierarchy of the KWT.

Proceedings of ICALEPCS2009, Kobe, Japan

Principal of the Qt-CA Interface

The core libraries of KWT Qt-CA interface are
AttachChannelAccess library and ChannelAccessThr
library. Working procedure of AttachChannelAccess is
drawn in Fig. 2 briefly. Usually this library is used for a
widget containing child widgets of a Ul file created by Qt
designer. After initialization, this instance acquires list of
CAobjects from the QWidget or Ul file. For every
CAobjects it links event filter and work thread. If the
CAobject has control property, it is registered as control
object. The work thread created using ChannelAccessThr
class and it updates all hash tables for all CAobjects. Hash
table structure named by ChAccess which is updated by
work thread is shown in Fig. 2. It is updated at every pre-
defined period or CA monitor event.

- >| eventFilter

/> Mouse right click? N\
: and object is CADisplayer?
-> pop up Singleplot
> Mouse right click?
and object is CAGraphic
and does it have popup property?
- pop up linked panel
| » Does it have control property?
‘\ caput

e workThread

Get QtObject from loaded UI files
or QWidgets

- Getdata from 10C

at every monitor event
or by user-defined period
using CAUITime

Update CA objects

Q) e
Ves ™ Chobject? >

Does if
control
NO

it have Register control
property? . ﬁ objects
O

into hash table
Figure 2: Working procedure of AttachChannelAccess
library.

KWT Widgets

The KWT includes 18 widget classes and brief
explanations about the widgets are as follows.

AttachChannelAccess class attaches a widget or an Ul
file, which is created using Qt designer, to a structured
hash table vector. The widget is usually a container
having lots of KWT widgets. The hash tables are updated
by the ChannelAccessThr by the pre-defined refresh
policy.

ChannelAccessThr class updates the hash tables,
which are created by AttachChannelAccess class, with the
latest CA results.

CAUlITime class defines refresh policy of a widget to
be attached to a structured hash table vector by the
AttachChannelAccess. Refresh policy may be periodic or
event-driven. If the refresh policy is periodic, a period by
second should be defined additionally. If it is event-driven,
the parent widget updates its children at every CA
monitor event. CAUITime has another unique property,
control master. If a developer defines control master
process variable (PV) in the CAUITime instance, all
control widgets’ control property may be locked by the
control master PV.

Operational Tools

TUP029

CADisplayer displays numeric data with the
corresponding alarm information with a specific color.
MAIJOR, MINOR, NO ALARM, or INVALID alarms
from EPICS Input Output Controller (IOC) changes
CADisplayer fill-color with red, yellow, dark green, or
grey each other. In a case with CA disconnection its fill-
color is changed to white showing disconnection message.
If an operator clicks the instance with right mouse button,
a SinglePlot instance with the corresponding PV is
popped up.

CABoButton is a pair of QPushButtons with a false
button and a true button. If an operator pushes one of
them, it sends operator’s choice to the PV. A developer
can make it be committed by the matched password or
confirmation.

CAMbboButton is a collection of multiple
CAPushButtons for EPICS mbbo record. If an operator
pushes one of them, it sends the corresponding numeric
value to the PV..

CAImageMbbi is a collection of multiple QLabels for
EPICS mbbi record. Particularly, QLabels in it are
displayed with pixmap images. In a case with CA
disconnection, a white pixmap image is displayed.

StaticGraphic is a symbol library. Even if it is
included in the KWT library, it doesn’t communicate with
EPICS. A developer can choose one of the pre-defined
geometries. Various geometries including vacuum devices,
arrows, ellipse, rectangle, etc are already pre-defined. It
is useful to make a simple diagram or legend.
CAGrahpic inherits properties from StaticGraphic class
and changes its color by the PV’s alarm status or value. If
a developer adds a new geometry to StaticGraphic class,

CAGraphic instance gets additional geometry
automatically.
CALabel was designed to display text label

corresponding to the value. But it became diversified to
display integer value, double value or text label by the
property.

CAWclock displays time information as text label. To
display the right time information you should install
timestamp library with it.

CAPushButton is a QPushButton which sends
operator’s command to the PV. It has 4 button types
consists of toggle-button, true-button, false-button, and
pulse-button.

CAColorCheckbox is used for CAMultiplot or
CAMultiwaveplot widget. It displays the color
information which is sent by CAMultiplot or

CAMultiwaveplot widget on its text label.

CALineEdit is a QLineEdit which sends entered
numeric data to the PV. It is usually used for EPICS
analogue output record.

SinglePlot is a single channel plotting class using
QWTPIot library. It is linked to the CADisplayer instance.

CAMultiplot is a multi-channel plotting class using
QWTPlot library. It can plot 10 analogue data at once to
the limit. CAColorCheckbox is used to show PV names
for each colored lines. CAMultiwaveplot is a multi-
channel plotting class using QWTPlot library for the

147

TUP029

EPICS waveform record and its usage is similar to
CAMultiplot widget.

OPI Development Example with the KWT

Widgets in the KWT were designed as plug-in widgets
to be inserted using Qt designer. Below procedures show
a simple example using the KWT.

e Create a Widget using Qt designer.

e Drag a CADisplayer instance from KSTAR widget
box and drop it to the proper position.

e Configure it with a valid PV name at the pvname
property.

o Save the widget as uifilename.ui.

e Develop a simple main application (main.cpp)
referring to Table 1.

¢ Compile the main application.

¢ Execute it.

Table 1: A simple Example of Main Application
#include <QtUiTools>
#include <QtGui>
#include “qtchaccesslib.h”

int main (int argc, char *argv[])

{
QApplication app(argc, argv);
AttachChannelAccess attach(“uifilename.ui, 1);
QWidget *pwidget = attach.GetWidget();
Pwidget->show();
Return app.exec();

APPLICATIONS OF KWT TO KSTAR

KSTAR OPI Panels

Over than 120 OPI panels were developed using KWT
and about 50 panels were developed using other EPICS
extensions such as QtCAtool, MEDM, and EDM. Some
screenshots of the KSTAR OPIs are shown in Fig. 3.
During the KSTAR commissioning, they were used for
remote operation without any serious problems. The OPI
panels with KWT were well accepted by the operators
because of the simple panel switching and consistent
appearance.

MenuWindow:
Collection of icons
aWindow B

MPS (EDM)

¥

ECH (KWT)

Qbs (MEDM)

speTE

ICRH (KWT)

DDS (QTCATOOL) TSS (QTCATOOL)
Figure 3: Operator interface panels developed using KWT
library and EPICS extensions.

Operational Tools

148

Proceedings of ICALEPCS2009, Kobe, Japan

Besides OPI panels, some applications such as multi-
channel plotting tool, process variable searching tool, and
logbook application were developed using KWT library.

Known Problems

The most serious problem of the KWT OPIs discovered
during the KSTAR commissioning was abnormal stop at
some CA server down. Even if the exact reason of it was
not clarified yet, it happened with the CA server down
having multiple IOCs in it. Total number of abnormal stop
of KWT OPIs was less than 5 times during the KSTAR
commissioning.

LICENCE POLICY AND S/W RELEASE

KWT is available as free software under the GNU
General Public License (GPL). The source code for the
KWT will be released on SourceForge in the CVS
repository of the KWT project [5].

CONCLUSION

Even if it took more time and effort to develop not only
OPI panels but also development toolkit, KSTAR OPIs
developed using KWT library satisfied almost
requirements concerning performance, easy & fast
development, nice maintenance, usability, and consistency
of appearance. However, abnormal stop occurred
intermittently at some CA server down should be fixed as
soon as possible to enhance stability of CA
communication.

REFERENCES

[1] http://www.aps.anl.gov/epics .

[2] M. Kwon et al., “The control system of KSTAR”,
Fusion Engineering and Design, June 2004, Volume
71, Issues 1-4, Pages 17-21.

[3] http://lansce.lanl.gov/EPICSdata/ca/client/caX 5Ftutor
-4.html#HEADING4-0.

[4] http://qt.nokia.com/.

[5] http://kwt.sourceforge.net.

