
ON-CHANGE PUBLISHING OF DATABASE RESIDENT CONTROL
SYSTEM DATA

K. Kostro, R. Billen, C. Roderick, CERN, Geneva, Switzerland

Abstract
The CERN accelerator control system is largely data

driven, based on a distributed Oracle® database
architecture. Many application programs depend on the
latest values of key pieces of information such as beam
mode and accelerator mode. Rather than taking the non-
scalable approach of polling the database for the latest
values, the CERN control system addresses this
requirement by making use of the Oracle Advanced
Queuing – an implementation based on JMS (Java
Message Service) – to publish data changes throughout
the control system via the CERN Controls Middleware
(CMW). This paper describes the architecture of the
system, the implementation choices and the experience so
far.

MOTIVATION
Some essential information on the accelerator is only

present in the database, for which especially the value
changes are important. Many high-level applications
regularly query the database in order to adapt their
execution according to this information. Such data
polling is not only inefficient but also resource
demanding on both sides. The publish/subscribe
mechanism, already largely adopted in the
implementation of today’s applications, solves this issue.
Therefore, the possibilities for publishing data from the
database have been investigated and exploited.

PUBLISH AND SUBSCRIBE
The publish/subscribe paradigm (pub/sub) is

extensively used in modern software to distribute and
receive information. Typically, in the accelerator controls
environment, front-end computer systems publish data
acquisitions of the underlying accelerator components and
beam observation equipment. Depending on their
interest, software applications can subscribe and get this
data. In addition, the subscriber can request to receive
filtered information according to his needs, such as less
frequent or on-change values.

In the current CERN accelerator control system, the
pub/sub paradigm is already extensively used, via the
Controls Middleware (CMW) and Java Message Service
(JMS) [5]. An extension of these communication
techniques towards on-line controls databases would be a
natural choice.

DATA IN HIGH-LEVEL APPLICATIONS
The LHC Software Architecture [1] is the current

framework and suite of high-level applications that are
being developed and used for accelerator operation.
These applications are written in Java and are highly data-

driven [2]. Data on accelerator settings is sent to the
hardware and measurement data is read back from it, via
the controls infrastructure. All of this information is
consistently and coherently persistent in the underlying
database management systems (DBMS) [3]. On the other
hand, some information is exclusively exchanged and
used by the software. The following important data falls
into this category, with examples for the LHC:

• Accelerator mode: operational phase of exploitation
for a given accelerator (e.g. “ion physics”).

• Beam mode: operational phase of a beam in a given
accelerator (e.g. “injection probe beam”).

• Bunch configuration: requested setup of RF-buckets
filled with bunches for circulating beam.

• Experiments handshake: exchange of status flags
with the experiments (e.g. “Atlas veto”).

Importance of Changing Data
The actual values of most of these parameters are

initialized and modified by control room operators via a
programmatically sequenced scenario. For example,
during the preparation of the LHC for beam injection, the
software updates the corresponding database tables.
These on-change modification events are essential for a
variety of software applications that in turn need to carry
out a number of steps and check different conditions.
This is not only limited to LHC operation, but extends to
the procedures executed with the participation of the LHC
experiments.

Detecting and Capturing Changed Data
Since this requirement existed already for previous

CERN accelerator projects, several implementations have
been deployed in the past. Applications in the 1980-ies
were querying the database tables of interest in a loop
construct. This part of the code was the most resource
consuming for time critical applications.

In the LEP-era, a more efficient solution was
implemented by means of a central process, the Database
Monitor (DBM). Based on the audit trail views in the
database’s data dictionary, the DBM detected data
modifications of tables for which other applications had
expressed their interest [4]. Inter-process communication
between the C-programs of that epoch, was based on
TCP/IP sockets. By means of a non-blocking method, the
DBM clients received a message indicating the data
manipulation action that took place.

Driven by today’s Java environment, the evolution of
technology and the quest for resource efficient software,
the possibilities for re-introducing a publishing
mechanism, from within the database were investigated.

TUP013 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

120

SELECTION OF THE PUBLISH
MECHANISM

The two middleware communication proto
used in the CERN control system – CMW
would suit the requirements. A direct usage w
embedding the Java code in the Oracle DBMS
this is technically possible, it would be diffi
for reasons of maintenance and stability.
such a dependency on a third party software c
generally not envisaged by the database devel

In order to achieve the optimal integration,
was to be found in the Oracle product suite.

Oracle Streams Advanced Queuing
Oracle Streams Advanced Queuing (AQ)

oriented middleware, fully integrated in
database. The message queuing functionality
based on JMS – is aimed to automate busin
workflows for distributed applications. The
well suited for our purposes and in addition,
the functions of the DBMS: Messages
persistently, can be queried as any other dat
and be propagated between queues on differen
and databases etc.

Because Oracle Streams AQ is impl
database tables, all operational benefit
availability, scalability and reliability are als
to queue data. The standard DBMS featu
recovery, restart and security are supported
tools for development like Oracle SQL De
management such as Oracle Enterprise Man
used to monitor the queues.

Development Integration
An important aspect of the implementa

database publishing is its integration in our d
process. In the case of Oracle Streams AQ thi
is provided via PL/SQL on the database devel
and as Java JMS on the Java client side. Co
PL/SQL can used to create queues, populate
data (the updated values in our case). On the c
Java-based server retrieves this data (via a
mapped to the queue), and further disse
information using the standard control system

Another important client of this mechan
database infrastructure itself. In addition to
databases can also subscribe directly to oth
queues using PL/SQL. We intend to make
functionality to allow certain database proce
into account the distributed data (i.e. m
accelerator to condition logging).

TRIGGERING ON DATA CHA
At start-up time, the message queues need t

and populated with initial values for each of
subjects. Afterwards, following manipulation
source (database table data), the queue need

ISHING

otocols widely
W and JMS –
e would imply
MS. Although
ifficult, mainly
. Introducing
e component is
elopers.
n, the solution

) is a message
in the Oracle
ity – internally
siness process
herefore, it is
n, it leverages
es are stored
database table,
rent computers

plemented in
fits of high
also applicable
atures such as
ed. The usual
Developer and
anager can be

ntation of the
r development
this integration
velopment side
Consequently,

late them with
e client side, a
 a JMS topic

sseminates the
m protocols.

hanism is our
to Java clients,
other database
ke use of this
cesses to take
mode of the

ANGE
d to be created
 of the defined
ion of a subject
eds to receive

the updated subject value. Several o
Oracle technology stack were considere

Change Data Capture
The Oracle Change Data Capt

introduced in Oracle 9i, based on trigg
tables. As from Oracle 10g, asynchron
on a capture process that reads the red
database. A change record gets push
queue, which can be read by a messag
technique is mainly used for database re
movements from source databases to da

Data Change Notification
Readily available for Java applicat

Change Notification (DCN) methods a
register its interest to the result of
queries. By means of a listener method
notifications can be received.

Our first investigations using the m
client libraries indicated stability issu
option as inappropriate for our producti

Database Triggers
As database developers, working w

triggers is straightforward. Simplicit
with direct and full control on the inte
administrator privileges) are clear adv
other hand, the code does need to
specific triggers need to be created per p

The data change triggering is curre
with database triggers. Future inve
evolution of other techniques are anticip

DESIGN AND IMPLEMEN
The basic architecture is depicted in f

Figure 1: Database Publishing A

As soon as table content changes, th
fires, and the new subject values are
message queue. Since we are using tra
the new subject values are only publis

l options within the
ered.

apture (CDC) was
iggers on the source
ronous CDC is based
redo log files of the
shed into a Streams
sage consumer. This
e replication and data
 data warehouses.

cations, Oracle Data
s allows the client to
of certain database

hod, database change

 most recent set of
ssues, rendering this
ction environment.

 with user database
icity, maintainability
nternals (no need for
advantages. On the
o be fail-proof and
er published data.
rrently implemented
vestigations on the
cipated.

ENTATION
n figure 1.

 Architecture.

, the database trigger
are pushed into the
transactional queues,
lished to subscribers

.

Proceedings of ICALEPCS2009, Kobe, Japan TUP013

Operational Tools

121

once the transaction responsible for the data manipulation
is committed.

The fist deployment only aimed to publish a simple text
string (Oracle VARCHAR2 data type). Nevertheless,
this allowed familiarisation with the Oracle AQ
capabilities and evaluating different aspects (e.g. Queue
type, message type, data type mapping, etc.).

Message Data Types
Publication of different data types must be catered for.

Oracle Streams AQ has provisions to send Oracle
ANYDATA objects – a self-describing data type which can
contain data of any type – including user defined types.

A PL/SQL method must be used to convert native or
user defined types into an ANYDATA object before
publishing it into an ANYDATA queue.

ANYDATA objects are retrieved from the queue by the
Java JMS client as Oracle AdtMessage objects.

For the specific implementation at CERN, four user
defined database types have been defined which represent
the data types which are currently required (number,
string, number array, and string array) together with a
subject name. On the Java client side, custom type
descriptors describe each of the user defined database
types as a Java class which implements the ORAData and
ORADataFactory interfaces.

The published AdtMessage objects are parsed using the
relevant custom type descriptor, and converted into
standard Java native types or collections which are then
re-published using CMW.

Re-publishing in the Control System
The queue message content is re-published via the

CMW infrastructure, since this makes the information
available in a common way to any client in the control
system using the usual CMW subscribing methods.

The alternative method of re-publishing via JMS – an
obvious choice at first sight – was not preferred for the
following reasons: Different JMS implementations are
compatible in their API but they are not compatible on-
the-wire, implying the need for a gateway in any case.
Distributing via CMW has the advantage to enlarge the
consumer community to C++ clients as well. Finally, the
distribution of the initial value of a subscription is better
handled by CMW.

The mapping between the CMW device/property
naming space to JMS topic/subject was done in the
simplest way. A single CMW device corresponds to the
JMS topic, and the CMW properties are mapped to JMS
subjects.

DEPLOYMENT

Application Server
The JMS client reading the Oracle AQ message queue

is deployed in a Java container on an Oracle Application
Server (OAS). This approach has been taken for all Java
applications requiring a tight integration with the Oracle
DBMS, deployed in 3-tier architecture.

Administration Tools
The Oracle Enterprise Manager is a powerful tool to

monitor and manage the activities on the OAS. Due to
the availability of the JMX (Java Management
Extensions) interface of the OEM, all information on
metrics and performance can be examined easily and
dynamically. Since the Java client is also instrumented
using Java managed beans (MBeans), it is also possible to
modify the client configuration on-the-fly using the same
OEM JMX interface.

USAGE AND EXPERIENCE
Twenty-six subjects are currently published via the on-

change database publishing service to the CERN control
system. The early implementation of the service was
already used for the first LHC beams in September 2008.

This service was created initially to distribute
configuration information to LHC experiments as their
control is completely detached from the LHC controls.
This is still the main use, but we also expect an increasing
utilisation by LHC operational applications.

ISSUES AND FUTURE DEVELOPEMENT
The service is running operationally and behaving as

expected. As a general issue, documentation and
examples of this Oracle technology in use seem to be
scarce and often out-of-date. The only functional issue
that needs further investigation concerns the overall
latency. The latest observations between data
modification and the corresponding reception of the
message by the CMW client are around 9 seconds. For the
time being, there is no requirement for a faster
notification, but there is clearly room for improvement.

REFERENCES
[1] G. Kruk et al., “LHC Software Architecture [LSA] –

Evolution toward LHC Beam Commissioning”,
ICALEPCS’07, Knoxville, USA, October 2007,
WOPA03, p. 307 (2007)*.

[2] C. Roderick and R. Billen, “The LSA Database to
Drive the Accelerator Settings”, ICALEPCS’09,
Kobe, Japan, October 2009, WEP006.

[3] R. Billen et al., “Accelerator Data Foundation: How
It All Fits Together”, ICALEPCS’09, Kobe, Japan,
October 2009, TUB001.

[4] E. Hatziangeli and F. Roeber, “A Description of the
SL Measurement and Logging System and the
Application Interface Libraries”, CERN SL/Note 93-
38 (CO), 29 March 1993

[5] K. Kostro et al., “The Controls Middleware (CMW)
at CERN - Status and Usage”, ICALEPCS’03,
Gyeongju, Korea, October 2003, WE201, p. 318
(2003)*

*
 Published at the Joint Accelerator Conferences Website (JACoW)

http://www.JACoW.org

TUP013 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

122

