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Abstract 
The Australian SKA Pathfinder (ASKAP) is a 1% 

Square Kilometre Array (SKA) pathfinder radio 

telescope, comprising of 36 12-metre diameter reflector 

antennas, each with a Focal Plane Array consisting of 

approximately 100 dual-polarised elements operating at 

centimetre wavelengths and yielding a wide field-of-view 

(FOV) on the sky of about 30 square degrees. ASKAP is 

currently under construction and will be located in the 

remote radio-quiet mid-west region of Western Australia. 

It is expected to be fully operational in 2013. Key 

requirements for the ASKAP control system include: 

control and monitoring of widely distributed devices, 

handling of a large number of monitoring points (approx. 

150,000), accurate time synchronisation and remote semi-

automated operations. After evaluating several software 

technologies we have decided to use the EPICS 

framework for the Telescope Operating System and the 

Internet Communications Engine (ICE) middleware for 

the high-level control message bus. This paper presents a 

preliminary design of the ASKAP control system as well 

as describing why we have chosen EPICS and ICE and 

how both technologies fit in the overall ASKAP software 

architecture. 

ASKAP THE PROJECT 

The future of cm and m-wave astronomy lies with the 

Square Kilometre Array (SKA), a telescope under 

development by a consortium of 19 countries. The SKA 

will be 50 times more sensitive than any existing radio 

facility. A majority of the key science for the SKA will be 

addressed through large-area imaging of the Universe at 

frequencies from 300 MHz to a few GHz. For more 

information about SKA, visit [1] and [2]. 

ASKAP is a next generation radio telescope on the 

strategic pathway towards the staged development of the 

Square Kilometre Array (SKA). ASKAP has four goals, 

namely: 

• To carry out world-class, groundbreaking 

observations directly relevant to the SKA Key 

Science Projects 

• To demonstrate and prototype the technologies for 

the mid-frequency SKA, including field-of-view 

enhancement by focal-plane phased arrays on new-

technology 12-metre class parabolic reflectors 

• To establish a site for radio astronomy in Western 

Australia where observations can be carried out free 

from the harmful effects of radio interference. 

• To establish a user community for SKA. 

ASKAP will be located in Boolardy, a remote outback 

mid-west region of Western Australia, approximately 400 

km northeast of Geraldton and 800 km north of Perth. The 

location also corresponds to the Australian SKA 

candidate core site. This region has been identified as 

ideal for a new radio observatory.  The population is very 

small and hence there is a lack of man-made radio signals 

that would otherwise interfere with weak astronomical 

signals. 

ASKAP will be mainly a survey telescope carrying 

systematic (unattended) routine observations of the entire 

southern sky. However a small amount of time will be 

allocated for targeted observations. For more information 

about ASKAP project visit [3]. 

Major challenges in terms of software development are: 

• Support for remote operations: Science operations 

and main control room will be located in Sydney 

(~4,000 km from Boolardy). Technical/maintenance 

operations and data processing will be located in 

Geraldton. 

• Very large data flow: ASKAP will produce approx. 

10 TB/hr of visibility data (full spectral resolution). 

Thus we cannot afford to store raw observed data. 

• Parallel and distributed processing is vital: There is a 

need to run calibration and imaging pipelines in High 

Performance Computers (HPC). 

• Limited computing staff: Approximately 60 FTE 

planned for mid-2006 to 2013. 

ASKAP SOFTWARE ARCHITECTURE 

Our Architecture Goals 

The philosophy behind our system decomposition into 

software components took into account three priorities: 

• Majority of components should be deployed in 

Geraldton. Only the strictly necessary functionality 

should be deployed in Boolardy because 

maintenance and support is more difficult and costly 

at the remote site. 

• Narrow interfaces: Services provided by each 

component should be well defined and as simple as 

possible. Dependencies between components should 

be minimal. 

• Loosely coupled: The ASKAP software system must 

be flexible and scalable both in terms of 

development, deployment and maintenance. 

Requirements are expected to change as more is 

learned about the system, the science that will be 

done with it, and the manner in which the system 

will be operated. A key to fulfilling this goal is loose 

coupling, where dependencies are minimised and 

modifications have minimal effect on the system as a 

whole. At a minimum, components should be loosely 

coupled in terms of hardware platforms, 

programming languages (C++, Java and Python) and 

even its implementation. 

 

Proceedings of ICALEPCS2009, Kobe, Japan TUD001

Status Report

343



 

 

Figure 1: Top-level logical view of the ASKAP system. The red boxes group the components commonly known in 

other projects as the Monitoring and Control (M&C) System. 

 

Logical View 

We have decomposed the ASKAP software system into 

several top-level components as shown in Figure 1: 

• Executive: Responsible for orchestrating an 

observation. 

• Scheduler: Responsible for scheduling the 

observation for execution by the Executive 

component. 

• Telescope Operating System (TOS): Responsible for 

monitor and control of the physical telescope. This 

component will be deployed in Boolardy. 

• Central Processor (CP): Responsible for processing 

observations into scientific products. 

• Data Service: Responsible for permanent and 

temporary storage of data shared by the online 

components. 

• Monitoring Archiver: Responsible for archiving 

monitoring data generated in the system. 

• Logging: Responsible for log messages generated in 

the system. 

• Alarm Management System: Responsible for 

managing/escalating alarm conditions in the system. 

• Operator Display: Responsible for presenting a User 

Interface for control and monitoring of the 

instrument by an operator. 

• Ephemeris Service: Responsible for providing 

ephemeris.  

• Radio Frequency Interference (RFI) Service: 

Responsible for identifying any RFI, which may 

impact the execution of the observation. 

Top-level Message Bus 

The communication between software components is 

done through a message bus, as shown in Figure 1. It is 

clear that nowadays many technologies exist that provide 

this type of communication infrastructure. These 

technologies are commonly known as middleware. Our 

requirements for the middleware are: 

• Multiplatform: both client and/or server running in 

Linux and MacOSX. 

• Language bindings for C++, Java and Python. 

• Support for request/response type of communication. 

• Support for publish/subscribe type of 

communication. 

• Promote loose coupling. 

• Support for fault tolerance (replication, etc.). 

• Open source. 

• Mature project. 

Three alternatives were evaluated in early 2009: 

Apache Tuscany ([4]), Apache ActiveMQ ([5]) and ICE 

([6]) The Apache Tuscany project looks promising and 

fulfils many of the requirements listed above but it was 

found too immature for our needs, in particular the 

support for C++ bindings ActiveMQ and ICE fulfil many 

of the requirements of our message bus. However, we 

have selected ICE over ActiveMQ primarily because of 

its Interface Definition Language (IDL). The benefits of 

having a strict IDL are: 

• Eliminates ambiguity. 

• Avoids us having to define our own IDL between 

software components. 

• Avoids us having to build our own bindings between 

the programming language and the IDL. 

Another reason that pushed ICE over ActiveMQ for us 

was that many of our interfaces appear to be best suited to 

an object oriented model. 
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THE TELESCOPE OPERATING SYSTEM 

(TOS) 

TOS Responsibilities 

The main functions of the TOS are: 

• Provides a narrow interface to other components 

mainly involved in observations. 

• Coordinates the operation of many distributed and 

heterogeneous hardware subsystems. All hardware 

subsystems are located in Boolardy and include: 

Antenna drives, receivers, local oscillators, digitisers, 

beamformers, correlator, event generators, time and 

signal distribution and environmental sensors 

(weather, lightning, power generator, humidity, room 

temperature, etc.). 

• Coordinates the correct time synchronisation 

between hardware subsystems. 

• Captures telescope monitoring data and generates the 

visibility’s meta-data for data processing by CP 

component. Publishing of meta-data is synchronised 

with integration cycle. 

• Handles safety operations with the instrument such 

as automatic wind stowing, network failures, etc. 

Evaluation of Control Software Frameworks 

In 2008 we evaluated four control software frameworks 

([7]) to be used in the implementation of the TOS and its 

subsystems: PVSS-II ([8]), EPICS ([9]), Alma Common 

Software (ACS) ([10]) and TANGO ([11]). All the 

software frameworks reviewed offer many of the 

technical aspects required by ASKAP and in general any 

monitoring and control system. The conclusion of the 

evaluation was that building the control software 

infrastructure (communication middleware, real-time 

database, alarm system, logging, etc.) from scratch in-

house is risky, not only in terms of timeframes and cost 

but also in terms of maintainability and reliability. Using 

existing software frameworks simplifies development and 

maintenance of complex control system. Many 

astronomical observatories and high-energy facilities have 

adopted commercial or non-commercial software 

frameworks for building their control systems. 

The result of the evaluation also selected EPICS as the 

framework to implement the ASKAP TOS. The main 

reasons are: 

• It is free, open source and with a very active 

community; and experience within Australia 

(Australian Synchrotron). 

• Both clients and servers can run in many platforms; 

not only in VxWorks. 

• Proven technology: EPICS have been used for more 

than 15 years. 

• Proven scalability. There are several facilities using 

EPICS supporting larger number of I/O points. 

• All the client needs to know is the PV name. No 

messing around with fixed addresses. 

• Lots of software tools available on the web. 

• Real-time database design appeals also to non-

programmers. 

• Presents a unified interface to high-level control 

(easier integration). 

• Provide common software for hardware subsystems 

developers. 

The evaluation report also presented some limitations 

of EPICS: 

• It is mainly used for soft real-time control system 

(suggested maximum control loop rate via Channel 

Access is 20 Hz). This is not an issue for us since 

hard real-time is done via hardware. 

• Limited data types in Channel Access protocol. For 

ASKAP there is no requirement to have a single 

software framework for the entire data flow system. 

Complex data types are needed at the top-level 

where we will use a different communication 

middleware (ICE). 

• Very “narrow” client/server API with no support of 

request/response-type of communication. This is not 

an issue for us since the operation of the control 

system is mainly asynchronous. 

CURRENT STATUS 

We have developed an EPICS-based system for the 

Parkes Testbed prototype. This is a 12-m single-antenna 

located in Parkes Observatory and used mainly for 

studying the performance of focal plane Phase Array  

Feeds (PAF). Currently the antenna is equipped with a 

40-element PAF. EPICS software is used in all the low-

level control: antenna drives, local oscillators, 

environmental monitoring, digitiser and beamformer. 

Python is used to implement the observation scripts and to 

interface to EPICS I/O controllers (IOCs) via third-party 

Python bindings. 

In terms of the overall ASKAP software, the 

Preliminary Design Review was passed successfully early 

2009 and we expect to have a Critical Design Review in 

March 2010. 

The first ASKAP antenna will be installed on site in 

late 2009. A six-antenna interferometer called Boolardy 

Engineering Test Array (BETA) will start early science 

commissioning in 2011. Full ASKAP will be operational 

in 2013. 
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