
PRELIMINARY DESIGN OF THE AUSTRALIAN SKA PATHFINDER

(ASKAP) TELESCOPE CONTROL SYSTEM

J.C. Guzman, CSIRO/ATNF, Sydney, Australia

Abstract
The Australian SKA Pathfinder (ASKAP) is a 1%

Square Kilometre Array (SKA) pathfinder radio

telescope, comprising of 36 12-metre diameter reflector

antennas, each with a Focal Plane Array consisting of

approximately 100 dual-polarised elements operating at

centimetre wavelengths and yielding a wide field-of-view

(FOV) on the sky of about 30 square degrees. ASKAP is

currently under construction and will be located in the

remote radio-quiet mid-west region of Western Australia.

It is expected to be fully operational in 2013. Key

requirements for the ASKAP control system include:

control and monitoring of widely distributed devices,

handling of a large number of monitoring points (approx.

150,000), accurate time synchronisation and remote semi-

automated operations. After evaluating several software

technologies we have decided to use the EPICS

framework for the Telescope Operating System and the

Internet Communications Engine (ICE) middleware for

the high-level control message bus. This paper presents a

preliminary design of the ASKAP control system as well

as describing why we have chosen EPICS and ICE and

how both technologies fit in the overall ASKAP software

architecture.

ASKAP THE PROJECT

The future of cm and m-wave astronomy lies with the

Square Kilometre Array (SKA), a telescope under

development by a consortium of 19 countries. The SKA

will be 50 times more sensitive than any existing radio

facility. A majority of the key science for the SKA will be

addressed through large-area imaging of the Universe at

frequencies from 300 MHz to a few GHz. For more

information about SKA, visit [1] and [2].

ASKAP is a next generation radio telescope on the

strategic pathway towards the staged development of the

Square Kilometre Array (SKA). ASKAP has four goals,

namely:

• To carry out world-class, groundbreaking

observations directly relevant to the SKA Key

Science Projects

• To demonstrate and prototype the technologies for

the mid-frequency SKA, including field-of-view

enhancement by focal-plane phased arrays on new-

technology 12-metre class parabolic reflectors

• To establish a site for radio astronomy in Western

Australia where observations can be carried out free

from the harmful effects of radio interference.

• To establish a user community for SKA.

ASKAP will be located in Boolardy, a remote outback

mid-west region of Western Australia, approximately 400

km northeast of Geraldton and 800 km north of Perth. The

location also corresponds to the Australian SKA

candidate core site. This region has been identified as

ideal for a new radio observatory. The population is very

small and hence there is a lack of man-made radio signals

that would otherwise interfere with weak astronomical

signals.

ASKAP will be mainly a survey telescope carrying

systematic (unattended) routine observations of the entire

southern sky. However a small amount of time will be

allocated for targeted observations. For more information

about ASKAP project visit [3].

Major challenges in terms of software development are:

• Support for remote operations: Science operations

and main control room will be located in Sydney

(~4,000 km from Boolardy). Technical/maintenance

operations and data processing will be located in

Geraldton.

• Very large data flow: ASKAP will produce approx.

10 TB/hr of visibility data (full spectral resolution).

Thus we cannot afford to store raw observed data.

• Parallel and distributed processing is vital: There is a

need to run calibration and imaging pipelines in High

Performance Computers (HPC).

• Limited computing staff: Approximately 60 FTE

planned for mid-2006 to 2013.

ASKAP SOFTWARE ARCHITECTURE

Our Architecture Goals

The philosophy behind our system decomposition into

software components took into account three priorities:

• Majority of components should be deployed in

Geraldton. Only the strictly necessary functionality

should be deployed in Boolardy because

maintenance and support is more difficult and costly

at the remote site.

• Narrow interfaces: Services provided by each

component should be well defined and as simple as

possible. Dependencies between components should

be minimal.

• Loosely coupled: The ASKAP software system must

be flexible and scalable both in terms of

development, deployment and maintenance.

Requirements are expected to change as more is

learned about the system, the science that will be

done with it, and the manner in which the system

will be operated. A key to fulfilling this goal is loose

coupling, where dependencies are minimised and

modifications have minimal effect on the system as a

whole. At a minimum, components should be loosely

coupled in terms of hardware platforms,

programming languages (C++, Java and Python) and

even its implementation.

Proceedings of ICALEPCS2009, Kobe, Japan TUD001

Status Report

343

Figure 1: Top-level logical view of the ASKAP system. The red boxes group the components commonly known in

other projects as the Monitoring and Control (M&C) System.

Logical View

We have decomposed the ASKAP software system into

several top-level components as shown in Figure 1:

• Executive: Responsible for orchestrating an

observation.

• Scheduler: Responsible for scheduling the

observation for execution by the Executive

component.

• Telescope Operating System (TOS): Responsible for

monitor and control of the physical telescope. This

component will be deployed in Boolardy.

• Central Processor (CP): Responsible for processing

observations into scientific products.

• Data Service: Responsible for permanent and

temporary storage of data shared by the online

components.

• Monitoring Archiver: Responsible for archiving

monitoring data generated in the system.

• Logging: Responsible for log messages generated in

the system.

• Alarm Management System: Responsible for

managing/escalating alarm conditions in the system.

• Operator Display: Responsible for presenting a User

Interface for control and monitoring of the

instrument by an operator.

• Ephemeris Service: Responsible for providing

ephemeris.

• Radio Frequency Interference (RFI) Service:

Responsible for identifying any RFI, which may

impact the execution of the observation.

Top-level Message Bus

The communication between software components is

done through a message bus, as shown in Figure 1. It is

clear that nowadays many technologies exist that provide

this type of communication infrastructure. These

technologies are commonly known as middleware. Our

requirements for the middleware are:

• Multiplatform: both client and/or server running in

Linux and MacOSX.

• Language bindings for C++, Java and Python.

• Support for request/response type of communication.

• Support for publish/subscribe type of

communication.

• Promote loose coupling.

• Support for fault tolerance (replication, etc.).

• Open source.

• Mature project.

Three alternatives were evaluated in early 2009:

Apache Tuscany ([4]), Apache ActiveMQ ([5]) and ICE

([6]) The Apache Tuscany project looks promising and

fulfils many of the requirements listed above but it was

found too immature for our needs, in particular the

support for C++ bindings ActiveMQ and ICE fulfil many

of the requirements of our message bus. However, we

have selected ICE over ActiveMQ primarily because of

its Interface Definition Language (IDL). The benefits of

having a strict IDL are:

• Eliminates ambiguity.

• Avoids us having to define our own IDL between

software components.

• Avoids us having to build our own bindings between

the programming language and the IDL.

Another reason that pushed ICE over ActiveMQ for us

was that many of our interfaces appear to be best suited to

an object oriented model.

TUD001 Proceedings of ICALEPCS2009, Kobe, Japan

Status Report

344

THE TELESCOPE OPERATING SYSTEM

(TOS)

TOS Responsibilities

The main functions of the TOS are:

• Provides a narrow interface to other components

mainly involved in observations.

• Coordinates the operation of many distributed and

heterogeneous hardware subsystems. All hardware

subsystems are located in Boolardy and include:

Antenna drives, receivers, local oscillators, digitisers,

beamformers, correlator, event generators, time and

signal distribution and environmental sensors

(weather, lightning, power generator, humidity, room

temperature, etc.).

• Coordinates the correct time synchronisation

between hardware subsystems.

• Captures telescope monitoring data and generates the

visibility’s meta-data for data processing by CP

component. Publishing of meta-data is synchronised

with integration cycle.

• Handles safety operations with the instrument such

as automatic wind stowing, network failures, etc.

Evaluation of Control Software Frameworks

In 2008 we evaluated four control software frameworks

([7]) to be used in the implementation of the TOS and its

subsystems: PVSS-II ([8]), EPICS ([9]), Alma Common

Software (ACS) ([10]) and TANGO ([11]). All the

software frameworks reviewed offer many of the

technical aspects required by ASKAP and in general any

monitoring and control system. The conclusion of the

evaluation was that building the control software

infrastructure (communication middleware, real-time

database, alarm system, logging, etc.) from scratch in-

house is risky, not only in terms of timeframes and cost

but also in terms of maintainability and reliability. Using

existing software frameworks simplifies development and

maintenance of complex control system. Many

astronomical observatories and high-energy facilities have

adopted commercial or non-commercial software

frameworks for building their control systems.

The result of the evaluation also selected EPICS as the

framework to implement the ASKAP TOS. The main

reasons are:

• It is free, open source and with a very active

community; and experience within Australia

(Australian Synchrotron).

• Both clients and servers can run in many platforms;

not only in VxWorks.

• Proven technology: EPICS have been used for more

than 15 years.

• Proven scalability. There are several facilities using

EPICS supporting larger number of I/O points.

• All the client needs to know is the PV name. No

messing around with fixed addresses.

• Lots of software tools available on the web.

• Real-time database design appeals also to non-

programmers.

• Presents a unified interface to high-level control

(easier integration).

• Provide common software for hardware subsystems

developers.

The evaluation report also presented some limitations

of EPICS:

• It is mainly used for soft real-time control system

(suggested maximum control loop rate via Channel

Access is 20 Hz). This is not an issue for us since

hard real-time is done via hardware.

• Limited data types in Channel Access protocol. For

ASKAP there is no requirement to have a single

software framework for the entire data flow system.

Complex data types are needed at the top-level

where we will use a different communication

middleware (ICE).

• Very “narrow” client/server API with no support of

request/response-type of communication. This is not

an issue for us since the operation of the control

system is mainly asynchronous.

CURRENT STATUS

We have developed an EPICS-based system for the

Parkes Testbed prototype. This is a 12-m single-antenna

located in Parkes Observatory and used mainly for

studying the performance of focal plane Phase Array

Feeds (PAF). Currently the antenna is equipped with a

40-element PAF. EPICS software is used in all the low-

level control: antenna drives, local oscillators,

environmental monitoring, digitiser and beamformer.

Python is used to implement the observation scripts and to

interface to EPICS I/O controllers (IOCs) via third-party

Python bindings.

In terms of the overall ASKAP software, the

Preliminary Design Review was passed successfully early

2009 and we expect to have a Critical Design Review in

March 2010.

The first ASKAP antenna will be installed on site in

late 2009. A six-antenna interferometer called Boolardy

Engineering Test Array (BETA) will start early science

commissioning in 2011. Full ASKAP will be operational

in 2013.

REFERENCES

[1] Australian and NZ SKA: http://www.ska.gov.au

[2] SKA: http://www.skatelescope.org

[3] ASKAP: http://www.atnf.csiro.au/projects/askap

[4] Apache Tuscany project: http://tuscany.apache.org

[5] Apache ActiveMQ: http://tuscany.apache.org

[6] ICE: http://www.zeroc.com/ice.html

[7] J.C.Guzman, “Evaluation of Software Frameworks

for the ASKAP Monitoring and Control System”,

ASKAP-SW-0002, CSIRO, 2008.

[8] PVSS-II: http://www.pvss.com

[9] EPICS: http://www.aps.anl.gov/epics

[10] ACC: http://www.eso.org/~almamgr/AlmaAcs

[11] TANGO: http://www.tango-controls.org

Proceedings of ICALEPCS2009, Kobe, Japan TUD001

Status Report

345

