
EW EPICS DISPLAY MA AGER I WPF*
H. Nishimura, C. Timossi, G. Portmann, P. Pace, C. Ikami, M. Beaudrow, E. Williams,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

Abstract
We have been developing a new kind of EPICS Display

Manager on Windows that we call WPF-DM. It is written
in C# using Visual Studio and is based on the new
Microsoft XML-based display building technology:
Windows Presentation Foundation (WPF). The derivate
of XML used by WPF, known as XAML, gives
descriptive configuration of the display components.
Therefore the GUI construction of an EPICS client
display may be created without actual programming.
Then, the C# code can be added to extend the
functionality of a display. This paper is on the new toolkit
WPF-DM with such features.

BACKGROU D
The first-half of the ALS high-level control software

upgrade project, [1], will be completed using the
following three tools to create EPICS clients.

• EPICS Display Manager (EDM)
• Matlab
• C# /ScaNET

EDM is often used by non-controls experts to write

simple EPICS client displays,[2]. Matlab is typically used
by physicists to create automated accelerator programs,
[3]. C# is optimized to create highly customized
programs with rich graphical user interfaces (GUI), [4].

If we focus on the control console programs that
operators use interactively to tune up the machine, most
of the programs are written in EDM or C#. It is desirable
to have both the simplicity of EDM and the flexibility of
C#. Instead of giving flexibility to EDM, our effort has
been to take the descriptive nature of EDM to WPF/C#.

The new high-level control system uses Windows Vista
for the console OS. By using a new standard of graphics
programming called the Windows Presentation
Foundation (WPF), this task can be done efficiently using
tools available on the .NET Framework. The resulting
toolkit we call EPICS Display Manager in WPF, or WPF-
DM in short.

FEATURES OF WPF-DM
WPF-DM is designed to take full advantages of WPF to

create EPICS client programs. It is developed and at runs
at the ALS on Windows Vista and takes advantage of the
existing power of Visual Studio and especially WPF.

Environment
WPF-DM is written in C# 3.0 on Windows Vista, using

the Visual Studio 2008 IDE (using .NET Framework 3.5).
Although WPF-DM itself can support both 32-bit and 64-
bit modes, it is built in the 32-bit mode to be compatible
with the lower layer of the EPICS system at the ALS.

GUI in XAML
Developing GUI in WPF is similar to designing a web

page in HTML. Instead of using HTML, WPF uses an
XML-based language that is called Extensible
Application Markup Language (XAML). Visual Studio
comes with a XAML designer for XAML. We can create
a GUI either by editing an XAML file, or visually from
within the IDE. The XAML code and its visual
representation are always synchronized. We usually create
a GUI in WPF by switching back and forth between the
XAML text editor and the visual design pane, locating
WPF components and modifying their properties. WPF-
DM provides a set of WPF GUI components that can be
used in the same manner.

There is also an XAML designer called Expression
Blend that is separate from Visual Studio. It has much
better graphics design capabilities than Visual Studio.
Typically, it is used to refine and enhance the GUI that
was originally created in Visual Studio. Actually, we can
work on the same C# project both by using Visual Studio
and Expression Blend simultaneously.

Expression Blend does not provide any direct access to
the C# source code embedded in the WPF components.
Instead, public component properties and routines are all
accessible so a user can design, recompile and run the
program in Expression Blend. By preparing the WPF-DM
Components properly, it becomes possible to develop
EPICS clients directly with Expression Blend. In this
case, a user does not program in C# but writes the GUI
and the actions among components in XAML in a
descriptive manner. Once the fundamental properties of
the WPF-DM components, such as device names, are
assigned in XAML, the design work can be done in a
visual manner. Therefore, it has become possible to
develop an EPICS client program with a rich GUI without
explicitly using any programming language.

Expandability
When extra functionality is necessary, it can be

implemented in C#. For example, a user can add a new
event handler to a WPF-DM component instantiated on a
form. As a WPF-DM client program is a standard WPF
application, any WPF programming can be linked to it.
This means that WPF-DM is not a closed framework but
one of many component libraries that are available on the
.NET Framework.

 __

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC02-05CH11231

Proceedings of ICALEPCS2009, Kobe, Japan THP101

Software Technology Evolution

877

COMPO E TS OF WPF-DM
WPF-DM is best explained by means of an example,

Fig. 1.

Figure 1: Device and view component example.

SCA Component
WPF-DM SCA Component is a thin wrapper around an

SCA.NET component[4]. This component is displayed in
the upper left hand corner of Fig. 1. The XAML for it is
shown below.

 <SCA Name="mysca" GroupAccess="False"/>

Device Manager Component
The Device Manager Component is located just under

SCA. This component is an interface to the XML file that
containing the device configuration. It’s referenced in
XAML as follows.

 <DeviceDB Name="DevDB" XML="Devices.xml"/>

Device Component
WPF-DM supports various kinds of devices. The Magnet
Power Supply (MPS) control is an example of the Device
Components for the ordinary magnet power supplies.
They are shown in Fig.1 as two rectangles each with 4
lines of text shown, and here is one of them defined in the
XAML below.

 <MPSControl Name=”Q5_1”
 DevDB="DevDB" ScaCon="mysca"
 Caption="BTS;Q5.1"
 DeviceName="BTS_____Q5,1" />

MPSControl gets the device definition from the Device
Manager Component “DevDB” by querying the device
name BTS_____Q5,1. At runtime, it reads the channel
values from the SCA Component “mysca”.

View Component
Q5.1 described above is a defocusing quadrupole

magnet. Although the MPS Control icon shows the
primary values, it is desirable to have a symbolic view. In
this case it is a convex lens shape just under the MPS
Control. This is the View Component that can be attached
to a MPS Control (called MagShape). It is defined in
XAML as shown below.

 <MagShape Controller="Q5_2" MagType="QF" />

TV Paddle Component
This is another example of a Device Component. It is

for beam profile monitors that use scintillation plate
paddles and TV cameras. The TV Paddle Manager
Component coordinates multiple TV Paddle Components
that control the individual hardware paddles. There are six
of them in Fig. 5

Knob-List Component
The Device and View Components are primarily used

to display channel values. To control the settings, WPD-
DM provides different components. One example is the
Knob-List Component in Fig. 3. It is associated with the
mouse-click event of a Device or a View Component and
controls that device.

Figure 2: Device and View Component example.

This component communicates with the Knob Panel
program (Fig.3) that appears at the bottom of the desktop
and makes use of the external USB rotary knobs, [5].

Figure 3: Knob panel .

GUI DESIG
This simple example was made inside Visual Studio.

After adding more components in XAML, Expression
Blend can be used to improve the look of the graphics.
Fig.4 shows a part of such an example.

Figure 4. GUI designed by Expression Blend.

THP101 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

878

Fig. 5 shows an example of an EPICS client program
entirely written in XAML by using WPF-DM – two
Knob-List Components at the bottom and five TV Paddles
near the center.

Figure 5: WPF-DM program entirely written in XAML.

This kind of EPICS client programs can be developed
in Expression Blend entirely in XAML without touching
any C# code by non-controls experts. If additional

functionality is required, a controls expert can add it in
C#. This flexibility improves software development
productivity significantly.

CO CLUSIO
At the ALS, WPF-DM has become the primary tool to

create interactive EPICS client programs and serves a
complementary role to applications developed using
EPICS-EDM and Matlab.

AK OWLEDGEME T
We appreciate the support and encouragement from D.

Robin, A. Biocca and R. Bloemhard. We also thank W.
Byrne and D. Richardson for their constructive comments
and test driving.

REFERE CES
[1] H. Nishimura et al, Submitted to PAC'09.
[2] J. Sinclair, http://ics-web.sns.ornl.gov /kasemir/

train_2006/ 1_4_EdmTraining.pdf
[3] J. Corbett, G. Portmann, A. Terebilo, PAC'03, 2369
 G. Portmann, J. Corbett and A. Terebilo, PAC'05,

4009.
http://www-ssrl.slac.stanford.edu/at/

[4] H. Nishimura and C. Timossi, PCaPAC'05
 H. Nishimura and C. Timossi, PCaPAC'06, 37
 C. Timossi and H. Nishimura, PCaPAC'06, 56
 C. Timossi and H. Nishimura, PCaPAC'08, 24
 H. Nishimura, C. Timossi, G. Portmann, M. Urashka,

C. Ikami and M. Beaudrow, PCaPAC'08, 122
[5] Griffin PowerMate USB Multimedia Controller

http://www.griffintechnology.com

Proceedings of ICALEPCS2009, Kobe, Japan THP101

Software Technology Evolution

879

