
DEVELOPMENT OF HIGH-LEVEL APPLICATION FRAMEWORK WITH
A SCRIPT LANGUAGE JCE FOR ACCLERATOR BEAM

COMMISSIONING

Hiroyuki Sako#, Japan Atomic Energy Agency, Tokai, Japan
Hiroshi Ikeda, Visible Information Center, Inc., Tokai, Japan

Abstract
For accelerator beam commissioning, script language

is

indispensable, especially in the early stage of
commissioning, to create and modify applications quickly
and iteratively. A high-level application framework based
on script language, J-PARC Commissioning Environment
(JCE), has been developed in Java. It is capable of device
control via EPICS, a beam transport simulation, GUI
components, mathematical functions, and so on, which
are flexibly and seamlessly combined in the script. A
Mathematica style of language (“SAD script”) is adopted.
A special care is taken to clearly separate the parser part
from actual function parts, and to document the codes.
Thus modularity of the architecture, code
understandability, and extensibility are dramatically
improved. JCE has been utilized successfully for beam
commissioning of J-PARC linac.

INTRODUCTION
A scripting language is a very convenient and powerful

tool to quickly develop beam commissioning and tuning
applications, especially in the early stage of beam
commissioning. Strategic Accelerator Design code (SAD)
which works in a script language “SAD script” similar to
the language of Mathematica has been developed and
used in KEK successfully for accelerator design and
commissioning [1]. However, it is implemented in rather
old language FORTRAN77 consisting of different layers
which have been developed over years. Moreover,
because the script interpreter and the actual functions are
tightly coupled, the software is difficult to understand and
modularize and, consequently, hard to maintain and
upgrade.

Therefore, we decided to adopt the SAD script as the
User Interface (UI) language, but construct a new high-
level application framework architecture in Java, named
JCE (J-PARC Commissioning Environment) [2]. By
doing so, ease of code maintenance and extensibility of
the commands is improved dramatically. A schematic
architecture of JCE is drawn in Fig. 1. A special care is
taken to separate codes implementing the parser from
actual command functions simplifying the maintenance
and the procedure of adding new commands. JCE adopts
also the XAL online model, which can be initialized with
the XAL configuration file. Additional information such
as device geometry and EPICS channel names in the
configuration file can be utilized in applications.
Therefore, JCE applications and XAL applications share
common online model and common device information,

and thus the two frameworks reflect updates of the
configuration file and developments of XAL online model
at the same time. JCE also imports various useful Java
libraries such as Java channel access libraries JCA, RDB
interface library JDBC, and other open source Java
libraries. JCE also has its own graphics and optimization
packages, and has a good extensibility to support a third
party simulation code such as the TRACE3D model [3]
via JNI (Java Native Interface).

Figure 1: JCE architecture.

IMPLEMENTATION
As shown in Fig. 2, the script interpreter consists of four

components; a parser, a builder, an evaluation engine, and
commands. The parser is an interpreter engine, which
interprets the syntax of the script and converts it into a
tree structure called the syntax tree. The parser is
implemented with open source software JavaCC (Java
Compiler Compiler). The builder further converts the
syntax tree into an evaluable tree structure (evaluation
tree). The builder has several command factories each of
which derives a command from a string of a script
element and then embeds the command into the
evaluation tree.

The evaluation engine actually “evaluates” the
evaluation tree. The engine calls the commands which are
embedded in the evaluation tree. Furthermore, symbols
and expressions in the tree are transformed to other values
and expressions by the engine according to transformation
rules. This transformation procedure is called rewriting. __

#hiroyuki.sako@j-parc.jp

THP091 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

850

For instance, rewriting realizes substitution of a value to a
variable. Rewriting dynamically changes the content of
the evaluation tree. On the other hand, transformation
within a command is predefined and static. Java exception
mechanism is utilized for run time errors of a script which
have occurred during evaluation, and for commands that
force flow changes by jumping over multiple cross-calls.

Commands are called by the evaluation engine and they
execute particular functions. The commands not only
invoke functions in evaluation but also have attributes
that can affect creation of the evaluation tree or evaluation
procedures. By utilizing such attributes, a script can have
a variety of functionalities. These commands are managed
by the command factory class, which embeds the
commands into the evaluation tree. A variety of
commands should be large and wide enough to be able to
create various applications for beam commissioning. The
current number of commands is about 300 and still
increasing steadily. If a new command is required by a
user, it must be added easily. A user can add a command
easily by implementing a command class based upon a
template; the procedure is documented. The commands
are categorized as in Table 1.

Table 1: Command Category and Commands

Category Command examples
Pattern matching Pattern(:),PatternTest(?),

Alternatvies(|)
Mathematical
calculations

Plus(+),Equal(==),And(&&),Cos,
Fourier

Flow control If, Do, For, Throw
Optimization SimplexMinimize,

ResponseMatrixMiniize
EPICS CaRead, CaWrite, CaMonitor
Online model XalLatticeInfo,XalProbeInfo, XalCalc
Waveform WaveArchiveReader,CaWaveArchiver
Graphics Window, Frame, Button, TkWait
Plots FastXYPlot, OpticsPlot
List operation Table, Length, Map, Scan
String operation StringJoin(//), StringLength
File I/O Get, OpenRead, Read, Write

Figure 2: JCE data flow.

of JCE
There are some special features in JCE worth noting.
1. Optimization of parameters
Optimization of arbitrary number of variables with any

kind of linear or non-linear functions is realized. The
choice of optimization method is possible among Simplex
method, Powell method, and Newton-Raphson method.
The last one is the most rapidly converging method
referred as the “Singular-Value Decomposition (SVD)
method”, since it uses a response matrix and calculates a
pseudo-inverse matrix using the SVD technique. This
method is very powerful and utilized in J-PARC
commissioning applications. For optimization of model
parameters, special optimization commands combined
with the online model have been developed.

2. Event loop
Evaluations in JCE are carried out in a single thread (the

main thread) for simplicity and efficiency. Therefore,
events from external system must be delegated to the
main thread. To realize this, an event queue and an event
loop mechanism to receive an event are implemented.
Since the event queue is implemented thread safe, any
events from external sources using the queue can be
notified safely.

3. Graphics User Interface
Each graphic component of JCE is represented as a

single expression. Thus, a complex graphic application
can be flexibly constructed by combining these
components. An example script for a graphic application
is given in Fig. 3. SAD uses Tcl/Tk to implement graphic
components, while JCE uses the standard AWT/Swing
library. Since elementary units of graphics components
are different, several basic components are combined to
implement JCE graphic components. Tcl/Tk is executed
in the main thread in SAD, while UI thread is used for
Swing execution in JCE. To absorb the difference the
event loop mechanism described above is used.

Add->{KBFComponentFrame[
 Add-> {KBFGroup[Text->"Wire Scanners X for emittance fit"]},
 Add-> {KBFCheckButton[Width->xwid,Variable:>awsx[1],Text->ws[1],WidgetVariable:>wawsx[1]]},
 Add-> {KBFCheckButton[Width->xwid,Variable:>awsx[2],Text->ws[2],WidgetVariable:>wawsx[2]]},
 Add-> {KBFCheckButton[Width->xwid,Variable:>awsx[3],Text->ws[3],WidgetVariable:>wawsx[3]]},
 Add-> {KBFCheckButton[Width->xwid,Variable:>awsx[4],Text->ws[4],WidgetVariable:>wawsx[4]]},

Figure 3: An excerpt of a JCE script to create a graphic
application.

4. Online Models
We use XAL online model as a core model. We can also

use the TRACE3D model [3] via Java Native Interface
(JNI). With JCE commands, model parameters of all
elements in the lattice and initial beam parameters can be
set. The calculated beam properties can be taken as a set
of parameters in the script, which can be analyzed and
visualized further. Therefore JCE can control the model
flexibly and combine the model with other commands.

5. Configuration File
The XAL configuration file is used to initialize the

model. The whole tree structure of the XML file format is
mapped to the JCE list and can be accessed via
commands.

6. Online Accelerator Map

Special Features

Proceedings of ICALEPCS2009, Kobe, Japan THP091

Software Technology Evolution

851

Recently, an online accelerator map has been added as
shown in Fig. 4. This GUI component displays a lattice
structure in one-dimensional and two-dimensional
representations. The latter is especially useful for a ring.
The map can be automatically created from the XAL
configuration file.

Figure 4: The online accelerator map GUI component.

APPLICATIONS AND BEAM TUNINGS
Here we show important beam commissioning

applications implemented in JCE.

The "matcher" application was implemented for

transverse beam matching corrections for J-PARC linac as
shown in Fig. 5. There are several matching sections in
the linac where beam profiles are measured with 4 wire
scanners placed at periodic lattice positions. There are
also 4 or more knob quadrupole magnets upstream the
wire scanners. The beam profiles are measured and beam
widths are calculated with "wsm" application developed
in JCE shown in Fig. 6. In the matching procedure, first,
at an upstream position before quadruple magnets,
transverse Twiss parameters and emittance of the online
model are fit to the measured beam widths. Then, in the
online model, corrections of quadruple magnet fields are
calculated requiring Twiss parameters agree with each
other at the wire scanners. For these calculations, SVD
method is used. Corrected beam envelopes are shown in
Fig. 5.

Figure 5: The transverse matching application.

For beam operations, we have developed beam monitor
displays for beam position monitors, fast current
transformer for energy measurements, and beam loss
monitors. Also applications to manage magnetic field
settings for quadrupole and dipole magnets have been
developed.

Figure 6: The wire scanner measurement application.

SUMMARY AND OUTLOOK
A high-level framework JCE based on a script language

has been developed for J-PARC beam commissioning and
operation. Based on the framework, high-level
applications have been developed and utilized
successfully for J-PARC linac. In a near future,
environment tools for JCE script development are going
to be developed.

REFERENCES
[1] K. Oide and H. Koiso, “Anomalous Equilibrium

Emittance due to Chromaticity in Electron Storage
Rings”, Phys. Rev. E49, 4474 (1994).

[2] H. Ikeda, H. Sako, et al
Script Interpreter with Java”, Proceedings of the 2nd
Annual Meeting of Particle Accelerator Society of
Japan, 2005, Tosu, Japan; H. Ikeda and H. Sako,
"Development of Script Interpreter for Beam
Commissioning at J-PARC LINAC", Proceedings of
the 4th Annual Meeting of Particle Accelerator
Society of Japan, 2007, Wako, Japan.

[3] K. R. Crandall and D. P. Rusthoi, “Trace 3-D
Documentation”, LANL Report LA-UR-97-887
(1997).

Beam Operation Applications

Transverse Matching Application

., “Development of a SAD

THP091 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

852

