
TASK SYNCHRONIZATION IN THE OBSERVATION CONTROL
SOFTWARE FOR THE ESO-VLT CRIRES INSTRUMENT

E. Pozna#, ESO, Garching beim Muenchen, Germany
A. Smette, R. Schmutzer, ESO, Santiago, Chile.

Abstract
The ever increasing pressure for both high spectral and

high angular resolution spectrograph imposes an
increasing complexity on astronomical instrument control
software, now a critical component in the instrument
design. To achieve the accuracy required to maintain the
image of the target within its 0.2 arcsec entrance slit, the
Observation Control software (OS) for the ESO-VLT
CRIRES instrument must take into account a number of
optical phenomena (differential atmospheric refraction,
distortion, etc.), some of them time dependent, even when
observing an object moving at a rate different from the
object used for auto-guiding. Four internal software
control loops adjust the position of mechanical devices
and/or the telescope in addition to the OS standard
functionalities (e.g. monitoring, exposure handling).
Besides internal activities, the OS must promptly
response to sequential commands as well as simultaneous
interruptions/adjustments from operator via GUI
interface. The required advanced synchronization
mechanisms are implemented as an extension to the OS
framework (a tool collecting the general features of all
instrument OS) while allowing for maintainability and
future generalization..

INTRODUCTION TO OBSERVATION
SOFTWARE AND TO ITS NEW DEMANDS

The Observation Software (OS) of an astronomical
instrument is the top level control software that carries out
the instructions of astronomers (given as sequential
command series) in order to record astronomical images.
Such instrument is the VLT CRyogenic high-resolution
InfraRed Echelle Spectrograph (CRIRES).

Figure 1: Instrument CRIRES [1].

 Receiving a command the OS distributes the
necessary actions to the subsystems (detectors and groups
of mechanical devices) and the telescope and
synchronises their actions. The main responsibility of
OS is to take care of series of exposures and meanwhile

monitor the system giving up-to-date information to the
operator. These common requirements of OS are well
supported by the BOSS framework [2]. BOSS gives such
level of support that it fulfils all requirements of a simple
instrument. The control software of CRIRES is however
far from the simple cases; its many extra (and complex)
functionalities rose problem with synchronisation and
event queues at the top level control software.

REQUIREMENTS AND ANALYSIS OF
CRIRES OS

CRIRES OS also has additional elements to control
(see Fig. 2.) than an average instrument OS, nevertheless
the difficulties arise not from this but from its manifold

Figure 2: Subsystems controlled by CRIRES OS.

functionalities (listed on Fig. 3.). Setting aside the pure
calculation procedures (chromatic effects, distortion,
refraction) we can group the functionalities as follows:

• User-triggered setting of hardware elements: used
during initial setting or to intervene in the operation.
E.g. offsetting the telescope, setting the derotator
angle, setting filter.

• Internal periodic actions: carrying out fine
positioning of mechanical devices (differential
tracking; guiding, i.e. sending offsets to telescope or
adaptive optics field selector based on offsets
measured by the slit viewer detector control system;
adjusting the environmental changes –e.g. airmass-
via periodic refraction calculation; adaptive optics
offload)

The various fine tuning loops all have different
frequencies, and can be switched on/off by the operator.

Interdependencies between Functionalities
The user actions and internal loops involve the

movement of instrument and/or telescope devices and
often the execution of other associated activities. The
scope of this paper does not allow for discussion of all
functionalities in detail; the examples below are to
illustrate their connectivity:

• Changing the slit viewer filter (i.e. the effective
wavelength) imposes a change in the differential
refraction between the effective wavelength of the ___

#epozna@eso.org

Proceedings of ICALEPCS2009, Kobe, Japan THP087

Software Technology Evolution

841

slit viewer (used for secondary guiding) and the
observing wavelength, which requires an offset to be
sent to the telescope or the adaptive optics field
selector. Filter change also imposes an update on the
real time display which, besides showing the real
stars also shows their expected locations, together
with other elements, such as guiding window
position.

Figure 3: Main functionalities of CRIRES OS.

• During refraction compensation the Guiding loop
should be suspended and vice versa.

• Refraction compensation is also part of the
differential tracking, during which all other internal
loops should be suspended.

• When differential tracking is due it should get
priority amongst the other internal loops.

Asynchronous Message Handling
Positioning of motor devices especially telescope can

be time consuming, therefore asynchronous message
handling is recommended during the positioning actions
not to hang the OS from its other activities (e.g.
monitoring) and remain responsive. The aim is to handle
events during a slow action, however in case of CRIRES
there are events that must not be dealt with
simultaneously. The execution of a colliding event must
be delayed (e.g. user sending a command during the
process of an internal loop).

Event Queue Dilemmas
Using sequential event handling, event queues are

unavoidable. A growing event queue e.g. due to a possible
slow (synchronous) action or simultaneous events raises
further matters to consider in case of CRIRES:

• What if an event on the queue loses its validity by
the time it gets executed? This can happen for
example if the guiding correction –calculated
periodically by the detector- gets delayed due to
another previously delayed positioning action. This
kind of behaviour would make the target jump
around its desired location, making the system
unreliable.

• How to ensure that the event queue is limited and
priority tasks are executed first (ensuring a
responsive system).

• A multiple occurrence of an event (that is generated
periodically) on the event queue would result in an
unnecessary frequency of its execution once the
resources are freed.

Parallel Commands during Operation
While executing predefined scripts of sequential

commands – which is the typical way of carrying out
observations - , the operator or the astronomer might wish
to interact with the system via GUI; e.g. switching
ON/OFF internal actions, or move elements. This means
to permit the handling of simultaneous commands, which
by default is rejected by BOSS.

Robustness, Maintainability, Reusability
Object oriented techniques offer robust, maintainable

and reusable solution that is required by both the operator
and the developer. However the key to achieving this is
the lack of interdependency!

IMPLEMENTATION
In order to resolve the seemingly contradictory

problems the following aspects were put into view:
• Remove interdependency by breaking down the

individual functionalities into a list of reusable
components (referred as actions).

• When an event is caught, add its sequence of actions
(i.e. the id-s of the actions) to the ‘action-list’.

• Execution of the list of actions should be managed
by a supervisor.

Figure 4: Three examples of event queue handling. Top
row shows the events collected during a slow action
(when left event is the most recent); bottom row shows
the actions to be executed taking into account all events.

THP087 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

842

• Map the actions with Id-s so that a non-supervisor
can refer to them.

• Change the course of actions already on the list
according to the latest event.

• Set a maximum occurrence for each action to protect
event queue from growing indefinitely.

Software Design
The implementation of the individual actions is based

on a common abstract class ‘ACTION’ (Fig. 5.) to ensure
the capability of their general handling. The event
callback function is placed in its dominant action class
(though it could be now separated). This callback function

Figure 5: Software design.

includes the check on the currently running and pending
actions via the associated SYNCHRON class. During the
event handling the pending action list is updated (existing
list might be modified, new actions might be added, see
examples on Fig. 4.). Should the system be idle and the
action list empty at the moment when the event is
received, then the execution of the first action is initiated.

The heart of this design is the singleton class
SYNCHRON which stores the information (id and
parameters) about the pending actions, yet independent
from the ACTION classes. The SYNCHRON class
implements an iterator on the list of pending actions. This
list is allowed to be dynamically modified via its
functions (e.g. delete all action of given type, relocate
action, update action with new parameter). (During the
execution of a command the currently running action is
set accordingly in order to prohibit other commands being
executed. This is relevant for non-blocking asynchronious
commands.)

The maximum number of occurrences of an action on
the list can be easily established. For example SETUP
and OFFSET commands may occur twice, where the limit
comes naturally from the operational conditions; one
request from GUI and one by the observational script.
Any additional commands will be rejected.

 The ACTION class is typically part of a group of
cohesive classes, i.e. it is associated with a calculation
object. The calculation class is responsible for the core
evaluation of optical phenomena e.g. refraction, data

handling (e.g. in case of filter compensation,
ephemerides, chromatic effect).

The calculation classes are stable, in terms of being
instrument independent while the actual
CONCRETE_ACTION class (which is typically
responsible for updating positions of hardware devices)
contains the instrument specific information.

When an action is terminated it generates a new event
to signal the superior SERVER class to execute the next
action if there is any. This internal event based solution
makes it possible to catch outside events even if the
pending action list contains blocking actions only. The
system is now capable to handle all type of actions
(commands, events, non-message, complex messages,
synchronous asynchronous, periodic etc.) in the same
way. It also allows the handling of monitoring or
emergency procedures outside the synchronization
mechanism enabling to be used as an extension to the
framework BOSS.

LESSON LEARNT AND FUTURE
CONSIDERATION...

One of the most challenging parts of the project was to
identify the possible source of problems, that even if
unhandled may remain hidden during tests, but can cause
disturbance during operations.

The system described above has been in operation (see
Fig. 6.) for several months without any break down, and
offers an easy way for future updates (e.g. adding
additional loops). The software design created can be also
easily turned into a reusable framework.

The authors of this paper believe that CRIRES software
might be just the first of its kind at ESO. The increasing
resolution of the detectors imposes higher demand on the
control aiming to achieve (and/or not to loose) the level of
precision that the new detectors are now allowing.

Figure 6: First test result with Saturn showing the action
list in the background during the offset of the telescope.

REFERENCES
[1] H. U.Käufl at all, "CRIRES: commissioning and first

science results" Proceedings of SPIE Vol. 7014
(SPIE, Bellingham, WA 2008) 70140W.

[2] E. Pozna, G.Zins, P.Santin, S.Beard, “A common
framework for the observation software of
astronomical instruments at ESO”, Proceedings of
SPIE Vol. 7019, 70190Q (2008).

Proceedings of ICALEPCS2009, Kobe, Japan THP087

Software Technology Evolution

843

