
RMS ENVELOPE BACK-PROPAGATION IN THE XAL ONLINE MODEL*

C.K. Allen#, ORNL, Oak Ridge, TN 37831, U.S.A.
H. Sako, JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

M. Ikegami, KEK, Tsukuba-shi, Ibaraki 305-0801, Japan

Abstract
The ability to back-propagate RMS envelopes was

added to the J-PARC XAL online model. Specifically,
given an arbitrary downstream location, the online model
can propagate the RMS envelopes backward to an
arbitrary upstream location. This feature provides support
for algorithms estimating upstream conditions from
downstream data. The upgrade required significant
refactoring, which we outline. We also show simulations
using the new feature.

INTRODUCTION
XAL is a Java-based (object-oriented) development

environment for high-level accelerator applications
initially developed at the Spallation Neutron Source.
There are numerous references on XAL in the literature
[1], as well as online documentation [2][3]. The basic
function is to provide a dynamic, device-oriented
interface to the accelerator hardware, however, XAL also
provides a numerous tools and support packages.

Figure 1: XAL with online model.

One such tool is an online simulation engine called the
XAL online model. Figure 1 is a UML schematic of XAL
emphasizing the online model. The model has been
previously described both theoretically [4] and
architecturally [5]. Many upgrades and customizations
have been made to the online model deployed at the J-
PARC facility [6]. Here we focus on the RMS envelope
back-propagation upgrade implemented there. Since the
upgrade required signification modification to the model
architecture, we outline the design of the online model.

Figure 2: Online model architecture.

XAL Online Model
The XAL online model is a real-time beam simulation

engine presenting a simple programming interface for
high-level physics and control applications. In addition,
the same interface is used for different simulation
categories (e.g. single-particle, multi-particle, envelope,
response matrix, etc.). Figure 1 depicts this situation, the
entire simulation engine is encapsulated as a Scenario
object. From an engineering aspect, we have a software
component that is easily maintained and upgraded to
support the varying requirements of accelerator
commissioning and operation.

The online model is based upon a special software
architecture called the Element-Algorithm-Probe design
pattern introduced by Malitsky and Talman [6]. The basic
architecture is shown in the UML schematic of Figure 2
(encapsulated in Figure 1). The design strategy decouples
the machine model from beam representation, and from
dynamics calculations; thus, a variety of simulation
capabilities can be realized with a single simulation
engine. Shown in Figure 2 are two abstract classes,
Tracker and Probe, that expose the IAlgorithm and
IProbe interfaces, respectively. These two base classes
handle most boilerplate functionality required of the
interfaces. Also shown are the two derived classes
EnvelopeTracker and EnvelopeProbe that support
RMS envelope simulation. We highlight these classes
since they required significant refactoring.

BACK PROPAGATION
The back-propagation feature was implemented as a

separate mechanism within the XAL online model,
following a separate execution thread than that of forward
propagation. This strategy was taken to avoid side-effects,

*Work supported by KEK under a foreign visiting scientist grant.
#allenck@ornl.gov

THP082 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

832

increase code readability, and to minimize any
obfuscation to the software developer. Even so,
significant refactoring was required to maintain
compatibility with the existing simulation features, and to
avoid code duplication.

Because of space charge and RF gap effects,
implementing back propagation requires considerable
more effort than simple matrix inversion. To support the
upgrade in a robust fashion, significant refactoring of the
underlying architecture was required. A major
modification is the Tracker class hierarchy. Also
significant is the addition of the method
backPropagate() in the Scenario model interface.
That modification forces a cascade of similar
modifications in order to conform to the architecture. In
addition, the technique for computing space charge
effects required modification.

Figure 3: Algorithm hierarchy refactored.

Tracker Hierarchy Refactoring
The algorithm hierarchy is founded on the Tracker

base class, the class hierarchy before back propagation
shown in Figure 2. A schematic of the refactored
hierarchy is shown in the UML diagram of Figure 3. To
avoid duplicate code, much of the functionality
previously in EnvelopeTracker was pulled up into the
new parent class EnvelopeTrackerBase. This
functionality includes the space charge effects and
emittance growth. Additionally, the method
retractProbe() was added to the Tracker base class
to back-propagate all the common beam probe attributes
(i.e., those found in the Probe base class). The method is
the functional complement of method advanceProbe(),
which forward propagates the common attributes.

At the bottom of the algorithm hierarchy are the two
concrete classes EnvelopeTracker and
EnvelopeBacktracker. These algorithms both operate
on EnvelopeProbe objects (the RMS envelope
representation); one forward propagating and one

backward propagating, respectively. All the technical
calculations are handled in the heavy-weight parent class
EnvelopeTrackerBase. The two children are light-
weight classes that perform the logistics of forward or
backward propagation. With this design we avoid code
duplication, consolidating the expensive, high-risk code
in a central location.

Finally, we note that there exists an additional class,
EnvTrackerAdapt, in the Tracker hierarchy not
shown in Figure 3. This algorithm class uses an adaptive
integration algorithm for forward propagation of RMS
envelopes. This algorithm is not often used at the J-PARC
site because the modelling of permanent magnet
quadrupoles requires equal integration steps. However,
the refactoring was also extended to this class.

Space Charge Mechanism
The technique for computing transfer matrices with

space charge was changed in order to accommodate the
back-propagation mechanism. Previously the calculation
was coupled with control flow; that was more efficient
but functioned correctly only for forward propagation.
Specifically, given a beamline element n, denote by ઴௡ሺ݈ሻ the transfer matrix which propagates beam particle
coordinates the length l down element n. At each
integration step, with step length h, the covariance matrix ࣌ (the state object of the RMS envelope class
EnvelopeProbe) was first advanced using the transfer
matrix ઴௡ሺ݄/2ሻ for the half step h/2. The space charge
transfer matrix, ઴௦௖ was then computed and used to
provide the space charge “kick” to ࣌. Finally, ࣌ is
advanced the final distance h/2 by matrix ઴௡ሺ݄/2ሻ to
complete the integration over length h.

In the new implementation we explicitly compute the
transfer matrix ઴ሺ݄ሻ for the full integration step. At each
element n we first propagate ࣌, forward or backward, by ઴௡ሺ݄/2ሻ for the specific purpose of computing the space
charge matrix ઴௦௖. Once ઴௦௖ is computed, ࣌ is rolled
back to its original state. Then the full transfer matrix,
including space charge, is formed as ઴ሺ݄ሻ ൌ ઴௡ሺ݄/2ሻ઴௦௖઴௡ሺ݄/2ሻ, which is then used to propagate ࣌ over
length h. Although this implementation is slightly more
expensive (it has one additional 6 ൈ 6 matrix
multiplication per integration step), it is more general and
allows for the direct computation of the back propagation
matrix,઴௡ሺെ݄ሻ, including space charge. This procedure
also supports the adaptive integration algorithm used in
the class EnvTrackerAdapt.

SIMULATION RESULTS
Figure 4 shows RMS envelope back-propagation

simulation results. Also plotted in the charts are forward
simulation results from the online model and from
Trace3D; this is a single curve with legend label XAL-
T3D. (The forward propagated results of XAL and
Trace3D are identical and seen as a single trace.) Also
shown are particle-in-cell forward simulations results
from the IMPACT code; this curve has label IMPACT.

Proceedings of ICALEPCS2009, Kobe, Japan THP082

Software Technology Evolution

833

The IMPACT curve is included for benchmark
comparison. The beamline under simulation is the
MEBT1-S03B line of the J-PARC linac. All simulations
use the same beam parameters, except for initializing
Twiss parameters. Forward propagation simulations are
initialized with the design Twiss parameters at the
beamline entrance. The back-propagation simulation is
initialized with the design Twiss parameters at the exit of
the beamline. The plots are an interesting method of
displaying the discrepancy between “what you have” and
“what you want.” When the forward propagation Twiss
parameters are used to initialize back-propagation, the
results are identical and, thus, not shown.

SUMMARY
RMS envelope back propagation was implemented and

tested in the XAL online model at J-PARC. Concerning
this upgrade we make a couple practical remarks. Back
propagation was implemented to support the online model
phase-slip calculation, however the feature is, as of yet,
untested. Emittance growth can be simulated when back-
propagating, however, only the Trace3D emittance
growth model appears to be stable over longer distances;
apparently a numerical issue considering that the
emittance growth mechanism is nonlinear and back
propagating involves matrix subtraction here.

Figure 4: Simulations showing forward and backward propagated RMS envelopes along with an IMPACT comparison.

REFERENCES
[1] J. D. Galambos, C.P. Chu, S.M. Cousineau, T.A.

Pelaia, A.P. Shishlo, C.K. Allen, “XAL Application
Programming Structure”, PAC05 Conference
Proceedings, Oak Ridge, Tennessee , May 16-20,
2005, pp. 79-83.

[2] http://www.ornl.gov/~t6p/Main/XAL.html.

[3] https://wiki.ornl.gov/sites/xaldocs/PHYS798X%20C
ourse%20Material/Forms/AllItems.aspx.

[4] C.K. Allen, C.A. McChesney, N.D. Pattengale, C.P.
Chu, J.D. Galambos, W.-D. Klotz, T.A. Pelaia, A.
Shislo, “A Modular On-Line Simulator for Model
Reference Control of Charged Particle Beams”, PAC

2003 Conference Proceedings, Portland, OR, May
12-16, 2003.

[5] C.K. Allen, C.A. McChesney, C.P. Chu, J.D.
Galambos, W.-D. Klotz, T.A. Pelaia, A. Shislo, “A
Novel Online Simulator for Applications Requiring a
Model Reference”, ICALEPCS 2003 Conference
Proceedings, Kyongju, Korea, October 13-17, 2003.

[6] C. K. Allen, H. Ikeda, M. Ikegami, T. Ohkawa, H.
Sako, and G. B. Shen, “XAL Online Model
Enhancements for J-PARC Commissioning and
Operation”, MOPAN029, PAC 2007, Albuquerque,
USA, pp 218.

[7] N. Malitsky and R. Talman, “The Framework of the
Unified Accelerator Libraries”, ICAP 1998.

THP082 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

834

