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Abstract 
The ability to back-propagate RMS envelopes was 

added to the J-PARC XAL online model. Specifically, 
given an arbitrary downstream location, the online model 
can propagate the RMS envelopes backward to an 
arbitrary upstream location. This feature provides support 
for algorithms estimating upstream conditions from 
downstream data. The upgrade required significant 
refactoring, which we outline. We also show simulations 
using the new feature. 

INTRODUCTION  
XAL is a Java-based (object-oriented) development 

environment for high-level accelerator applications 
initially developed at the Spallation Neutron Source. 
There are numerous references on XAL in the literature 
[1], as well as online documentation [2][3]. The basic 
function is to provide a dynamic, device-oriented 
interface to the accelerator hardware, however, XAL also 
provides a numerous tools and support packages. 

 
Figure 1: XAL with online model. 

One such tool is an online simulation engine called the 
XAL online model. Figure 1 is a UML schematic of XAL 
emphasizing the online model. The model has been 
previously described both theoretically [4] and 
architecturally [5]. Many upgrades and customizations 
have been made to the online model deployed at the J-
PARC facility [6]. Here we focus on the RMS envelope 
back-propagation upgrade implemented there. Since the 
upgrade required signification modification to the model 
architecture, we outline the design of the online model. 

 
Figure 2: Online model architecture. 

XAL Online Model 
The XAL online model is a real-time beam simulation 

engine presenting a simple programming interface for 
high-level physics and control applications. In addition, 
the same interface is used for different simulation 
categories (e.g. single-particle, multi-particle, envelope, 
response matrix, etc.). Figure 1 depicts this situation, the 
entire simulation engine is encapsulated as a Scenario 
object. From an engineering aspect, we have a software 
component that is easily maintained and upgraded to 
support the varying requirements of accelerator 
commissioning and operation.  

The online model is based upon a special software 
architecture called the Element-Algorithm-Probe design 
pattern introduced by Malitsky and Talman [6]. The basic 
architecture is shown in the UML schematic of Figure 2 
(encapsulated in Figure 1). The design strategy decouples 
the machine model from beam representation, and from 
dynamics calculations; thus, a variety of simulation 
capabilities can be realized with a single simulation 
engine. Shown in Figure 2 are two abstract classes, 
Tracker and Probe, that expose the IAlgorithm and 
IProbe interfaces, respectively. These two base classes 
handle most boilerplate functionality required of the 
interfaces. Also shown are the two derived classes 
EnvelopeTracker and EnvelopeProbe that support 
RMS envelope simulation. We highlight these classes 
since they required significant refactoring. 

BACK PROPAGATION 
The back-propagation feature was implemented as a 

separate mechanism within the XAL online model, 
following a separate execution thread than that of forward 
propagation. This strategy was taken to avoid side-effects, 
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increase code readability, and to minimize any 
obfuscation to the software developer. Even so, 
significant refactoring was required to maintain 
compatibility with the existing simulation features, and to 
avoid code duplication.   

Because of space charge and RF gap effects, 
implementing back propagation requires considerable 
more effort than simple matrix inversion. To support the 
upgrade in a robust fashion, significant refactoring of the 
underlying architecture was required. A major 
modification is the Tracker class hierarchy. Also 
significant is the addition of the method 
backPropagate() in the Scenario model interface. 
That modification forces a cascade of similar 
modifications in order to conform to the architecture. In 
addition, the technique for computing space charge 
effects required modification. 

 
Figure 3: Algorithm hierarchy refactored. 

Tracker Hierarchy Refactoring 
The algorithm hierarchy is founded on the Tracker 

base class, the class hierarchy before back propagation 
shown in Figure 2. A schematic of the refactored 
hierarchy is shown in the UML diagram of Figure 3. To 
avoid duplicate code, much of the functionality 
previously in EnvelopeTracker was pulled up into the 
new parent class EnvelopeTrackerBase. This 
functionality includes the space charge effects and 
emittance growth. Additionally, the method 
retractProbe() was added to the Tracker base class 
to back-propagate all the common beam probe attributes 
(i.e., those found in the Probe base class). The method is 
the functional complement of method advanceProbe(), 
which forward propagates the common attributes. 

At the bottom of the algorithm hierarchy are the two 
concrete classes EnvelopeTracker and 
EnvelopeBacktracker. These algorithms both operate 
on EnvelopeProbe objects (the RMS envelope 
representation); one forward propagating and one 

backward propagating, respectively. All the technical 
calculations are handled in the heavy-weight parent class 
EnvelopeTrackerBase. The two children are light-
weight classes that perform the logistics of forward or 
backward propagation. With this design we avoid code 
duplication, consolidating the expensive, high-risk code 
in a central location.   

Finally, we note that there exists an additional class, 
EnvTrackerAdapt, in the Tracker hierarchy not 
shown in Figure 3. This algorithm class uses an adaptive 
integration algorithm for forward propagation of RMS 
envelopes. This algorithm is not often used at the J-PARC 
site because the modelling of permanent magnet 
quadrupoles requires equal integration steps. However, 
the refactoring was also extended to this class. 

Space Charge Mechanism 
The technique for computing transfer matrices with 

space charge was changed in order to accommodate the 
back-propagation mechanism. Previously the calculation 
was coupled with control flow; that was more efficient 
but functioned correctly only for forward propagation. 
Specifically, given a beamline element n, denote by ઴௡ሺ݈ሻ the transfer matrix which propagates beam particle 
coordinates the length l down element n. At each 
integration step, with step length h, the covariance matrix ࣌ (the state object of the RMS envelope class 
EnvelopeProbe) was first advanced using the transfer 
matrix ઴௡ሺ݄/2ሻ for the half step h/2.  The space charge 
transfer matrix, ઴௦௖ was then computed and used to 
provide the space charge “kick” to ࣌. Finally, ࣌ is 
advanced the final distance h/2 by matrix ઴௡ሺ݄/2ሻ to 
complete the integration over length h.  

In the new implementation we explicitly compute the 
transfer matrix ઴ሺ݄ሻ for the full integration step. At each 
element n we first propagate ࣌, forward or backward, by ઴௡ሺ݄/2ሻ for the specific purpose of computing the space 
charge matrix ઴௦௖. Once  ઴௦௖ is computed, ࣌ is rolled 
back to its original state. Then the full transfer matrix, 
including space charge, is formed as ઴ሺ݄ሻ ൌ ઴௡ሺ݄/2ሻ઴௦௖઴௡ሺ݄/2ሻ, which is then used to propagate ࣌ over 
length h. Although this implementation is slightly more 
expensive (it has one additional 6 ൈ 6 matrix 
multiplication per integration step), it is more general and 
allows for the direct computation of the back propagation 
matrix,઴௡ሺെ݄ሻ, including space charge.  This procedure 
also supports the adaptive integration algorithm used in 
the class EnvTrackerAdapt. 

SIMULATION RESULTS 
Figure 4 shows RMS envelope back-propagation 

simulation results.  Also plotted in the charts are forward 
simulation results from the online model and from 
Trace3D; this is a single curve with legend label XAL-
T3D. (The forward propagated results of XAL and 
Trace3D are identical and seen as a single trace.)  Also 
shown are particle-in-cell forward simulations results 
from the IMPACT code; this curve has label IMPACT. 
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The IMPACT curve is included for benchmark 
comparison. The beamline under simulation is the 
MEBT1-S03B line of the J-PARC linac. All simulations 
use the same beam parameters, except for initializing 
Twiss parameters. Forward propagation simulations are 
initialized with the design Twiss parameters at the 
beamline entrance. The back-propagation simulation is 
initialized with the design Twiss parameters at the exit of 
the beamline. The plots are an interesting method of 
displaying the discrepancy between “what you have” and 
“what you want.” When the forward propagation Twiss 
parameters are used to initialize back-propagation, the 
results are identical and, thus, not shown. 

SUMMARY 
RMS envelope back propagation was implemented and 

tested in the XAL online model at J-PARC. Concerning 
this upgrade we make a couple practical remarks. Back 
propagation was implemented to support the online model 
phase-slip calculation, however the feature is, as of yet, 
untested. Emittance growth can be simulated when back-
propagating, however, only the Trace3D emittance 
growth model appears to be stable over longer distances; 
apparently a numerical issue considering that the 
emittance growth mechanism is nonlinear and back 
propagating involves matrix subtraction here. 

 

Figure 4: Simulations showing forward and backward propagated RMS envelopes along with an IMPACT comparison. 
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