
EXTENDING ACNET COMMUNICATION TYPES TO INCLUDE
MULTICAST SEMANTICS

R. Neswold, C. King
FNAL†, Batavia, IL 60510, U.S.A.

Abstract
In Fermilab's accelerator control system, multicast

communication wasn't properly incorporated into
ACNET's transport layer, nor in its programming API.
We present some recent work that makes multicasts
naturally fit in the ACNET network environment. We also
show how these additions provide high-availability for
ACNET services.

INTRODUCTION
When multicasts were first used in Fermilab's ACNET

control system, they were handled differently than normal
ACNET communication. Rather than using the familiar
ACNET API, programmers had to use specialty libraries.
This meant that applications would communicate via
ACNET for normal data acquisition needs, but would
additionally manage multicast resources (even if hidden
behind a library interface) for the few protocols requiring
multicast reception.

As more services required multicast communications,
more infrastructure was added – some of it resembling the
connection management already done by the ACNET
process. It became apparent that, with a few tweaks,
multicasts could be cleanly incorporated into ACNET
and, with it, some very interesting behaviour can be
implemented.

MIGRATING TO MULTICASTS
For a system to become an ACNET node, it needs to be

added to the ACNET node table. The node table maps an
ACNET node name to its IP address. Each ACNET node
carries a copy of the node table which it references when
sending a message to another node.

Since the node table contains IP addresses, we can
easily allow multicast transmissions by creating a
ACNET node name and associating it with an IP
multicast address. Applications using the ACNET
communication libraries would then be able to send
multicasts by using an ACNET node name, rather than
using a separate set of functions tailored for a protocol.

Receiving Multicasts
Transmission was simple, but unfortunately we don't

get reception of multicasts for free. Somehow ACNET
needs to know when to join and drop the group address.
One solution would be to join all the multicast addresses
in the node table. As changes are made to the node table,
groups can be joined and dropped, as appropriate. This

approach seemed excessive, though, since most multicast
traffic would then be received by the ACNET process, but
thrown away if there were no clients interested in the
packet. We chose to implement a solution that is more
efficient with resources.

Historically, applications have always been able to
connect to ACNET using more than one handle. We use
this ability so that a client may connect with a unicast
handle and one or more multicast handles. But what
makes a handle able to receive multicasts? When the
client connects to ACNET, it specifies a name to be its
connection handle. The ACNET process looks in the node
table to see if a node with the same name exists and if it is
associated with a multicast address. If so, the ACNET
process joins the multicast group and the client will begin
receiving multicast messages.

As an example, Fermilab has a protocol called DbNews
in which changes to our device database are broadcast to
all interested clients. A multicast address is assigned to
this service and is associated with the ACNET node name
DBNEWS, through the node table. The task monitoring
database changes sends its report to the DBNEWS
“node”. A client wishing to receive these reports would
create an ACNET connection using a handle of
DBNEWS, which would make the ACNET process join
the DBNEWS group. The client will receive DbNews
reports only through this connection. When the client
terminates, its connection gets closed and ACNET drops
membership in the DBNEWS group.

Extending Requests with Single Reply
In addition to datagrams, ACNET supports two

request/reply transports; one version expects a single
reply and the other expects a series of replies. Extending
the datagram transport was easy. But we wondered if we
could cleanly extend our request/reply transports as well.
It turns out we could.

In the single reply case, an ACNET client sends a
request packet to a service. Making a request sets up a
connection between the two tasks, the state of which is
maintained by their respective ACNET processes. The
connection is maintained until one of two events occurs.
The normal resolution is for the service to respond with
the reply packet, at which point the connection state is
removed in the ACNET processes. The other, less
frequent possibility is that the requesting task sends a
cancel message, which causes the participating ACNET
processes to clean up the request connection (the remote
service is also notified of the cancellation.)

†Operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.

THP081 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

830

How does this work with multicasts? The request is
multicast and received by all tasks connected to the
corresponding multicast handle. No matter how many
services listen and reply, only the first reply will be seen
by the requesting client because after receiving a reply,
the request connection is invalidated.

All ACNET packets (datagrams, requests, and replies)
have a common header which, among other things,
contains the sender's node name. In the case of replies
from a multicasted request, the sender's node name would
be the generic multicast node name. This is less useful
than having the client know who really responded to the
request, so the ACNET process modifies the header to
reflect the actual node name of the responder.

Extending Requests with Multiple Replies
The other request/reply transport supported by ACNET

is one where multiple replies are sent. When a client asks
for multiple replies, the server uses a flag field in the
header to indicate whether the packet is a reply with more
expected, or if it's the last reply. When marked as the last
reply, the ACNET process will clean-up the connection's
resources after delivering the last reply to the client.1

To support this mode of communication, more
extensive changes were required. ACNET still modifies
the header to indicate the node sending the reply. In
addition, ACNET doesn't allow any of the repliers to
close the connection by sending a “last reply” status. All
replies will appear, to the client, to have more following.
The only permitted way to end the request is for the client
to multicast a cancel message.

USING MULTICASTED REQUESTS
Now that we have multicasted requests at our disposal,

we found they have very useful applications. They give us
further ways to reduce network resources as well as
techniques that provide high-availability to our network
services.

Reducing Resources
We have applications that poll a group of nodes. Some

application monitor the node's health while others display
a group of nodes' up-time. These sorts of application
typically send a request to each node and expect a single
reply. As long as the application runs, it cycles through its
list, polling each node. They could be written to request
multiple replies from each node. However, the network
resources being used would grow proportionately with the
1 In fact, a request for a single reply is a special case where the first
 reply is marked as the last reply.

number of monitored nodes, since receiving multiple
replies requires a connection of its own. By multicasting a
request for multiple replies, only one network connection
is maintained and the application needs only to monitor
the one connection – no matter how many nodes are
participating in the replies.

High Availability: Service Discovery
Recent ACNET services have been developed that take

advantage of multicasted requests that expect a single
reply. A client interested in the service broadcasts a query
request. The services receiving the query respond with an
“I'm here!” notification. Only the first reply is passed on
to the client. This retires the practice of setting aside
certain nodes to be the “dedicated server” and of using
hardcoded node addresses in software libraries. The
system is much more flexible and dynamic (although
admittedly, it now requires this initial discovery
transaction.)

High Availability: Load Balancing
With a slight tweak to the ACNET service, load

balancing can be added.
For example, a service is started on several ACNET

nodes. A client needing the service broadcasts the request
and only receives the first reply (service discovery). Each
server is programmed to delay its reply to a discovery
request. The delay should be bounded, but is scaled based
upon how much work it's currently doing. Servers doing
less work will respond quicker than busier servers. The
client can check the reply's header to see which server
responded first and, therefore, is the least busy. The rest
of the service transactions can be done with this server.

If control system personnel find all servers are
constantly loaded, more copies of the service can be
started on other nodes to scale the resources according to
the demand.

If a service is taken down (or crashes!) while a client is
using it, the client can try to restore the connection, or
more simply, make another service discovery request and
start interacting with an alternate server.

CONCLUSION
We began this effort in order to make all network

communications consistent – essentially cleaning up some
code. But what we didn't anticipate, at the time, was how
useful and powerful these changes would be for scaling
our ACNET services. We currently have servers using the
service discovery and load balancing techniques described
in this document and plan on converting others.

Proceedings of ICALEPCS2009, Kobe, Japan THP081

Software Technology Evolution

831

