
EPICS CHANNEL ACCESS IMPLEMENTATION IN LABVIEW

A. Zhukov, W. Blokland, R. Dickson, ORNL RAD, Oak Ridge, USA

Abstract
LabVIEW is becoming increasingly popular in

Accelerator Control Systems. Interfacing of LabVIEW
with EPICS could be done in several ways. We provide a
native LabVIEW implementation of the CA protocol.
Such an approach greatly simplifies the development of
EPICS[1] controlled devices in LabVIEW.

INTRODUCTION
The Spallation Neutron Source (SNS) is a particle

accelerator driven pulsed neutron source. The
Experimental Physics and Industrial Control System
(EPICS) is used as control system for the accelerator
complex. There are more than 300 devices being
controlled by Windows based PCs. These include: Beam
Current Monitors, Beam Position Monitors, Wire
Scanners and more. National Instruments’ (NI) LabVIEW
is used as the software development environment for
these PCs. To integrate with EPICS clients, e.g. operator
screens in the SNS control room, a communication
interface between LabVIEW and EPICS is required.

DIFFERENT TYPES OF INTERFACES

Shared Memory
Currently our main method of connecting LabVIEW

with EPICS is the EPICS Shared Memory Interface[2]. A
DLL provides device support by sharing memory with the
LabVIEW process. Thus we have 2 relatively independent
processes running simultaneously: EPICS server and the
LabVIEW runtime. This approach has obvious
advantages:

• Having a standard full EPICS Input/Output
Controller (IOC) server allows leveraging the power
of records processing and the features that comes
with it.

• All Channel Access (CA) clients work seamlessly
because clients “see” a standard IOC.

This mechanism also has disadvantages:
• The implementation is OS specific. Although EPICS

itself is ported to different platforms and LabVIEW
has versions for different platforms this binding layer
has to be implemented for every OS. While this is
surely possible, a big effort is needed.

• One needs to support two mapped data structures:
IOC records and LabVIEW variables.

• The installation and maintenance of versions of the
EPICS Shared Memory IOC and LabVIEW libraries
is required.

• Having two processes makes debugging more
difficult than having a single process.

CA Server
Alternatively, instead of having a full IOC, one can use

the CA server only. It won’t have record processing
power, but will publish data onto the network. All
standard CA clients will be able to communicate with
this. While there is a C++ version of the CA server, it is
possible to implement a CA server in any language that
supports TCP/IP and UDP/IP communication. A good
example of this is the Java CA library developed by
Cosylab[3]. Since LabVIEW has full functionality for
TCP/IP we tried to implement the CA protocol
specification internally in LabVIEW.

NI Datalogging and Supervisory Control
Module

NI has developed several implementations of the
EPICS CA server for different OSs. It is part of the
Datalogging and Supervisory Control Module [4]. It
follows the concept of shared memory method. So, for
example, the Windows version requires installation of
additional Windows service.

PURE LABVIEW CA SERVER

Requirements
Careful analysis of our EPICS connectivity needs led to

the following requirements:
• We need a CA server, not a full IOC (since all logic

is implemented in LabVIEW code rather than in
EPICS record processing)

• The server should be able to host about 2000 PVs.
We are not expecting a single system to multiplex
with large numbers of detectors. Our most typical
use case is one device per IOC (e.g. every BCM is
controlled by dedicated PC).

• The data transfer rate we need is about 10 Mbit/s
(maximum 50Mbit/s for video systems)

• The server has to be compatible with all platforms
LabVIEW runs on: Windows, Linux, Mac OS,
LabVIEW Real Time on CompactRIO and PCs, and
maybe even on embedded systems.

We never use record processing so we can easily give up
this functionality of IOC.

In order to evaluate possibility of creation of CA server
in LabVIEW we set up a pilot project that doesn’t fully
comply with CA specifications but still allows us to
estimate the performance of such approach. Here are main
features of our pilot server:

• No CA Repeater (we probably won’t implement it
anyway because we will hardly ever have several
IOCs running on one host)

• No beacons
• Support UDP channel search

THP018 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

712

• Support two CA types (FLOAT and LONG)
• Support DBR_STS and DBR_TIME
• Support put, get and monitor

Server Architecture
We used the LabVIEW internal threading mechanism

as much as possible during the design of the server
architecture. Rather than using classical threads we use
simultaneously running VIs that use queues for sharing
data. Of these data, there are two main types: Virtual
Circuits (VC) and Records. The VC is the same concept
as a VC in the standard CA library, i.e. the data supports a
TCP client connection to a server. The record data is not a
fully functional EPICS record, but does hold an up to date
value and the state of the record. Every VC can be in
either a communication state or processing state. This
state information is maintained by the presence of the VC
data in one of two different queues. So switching states
effectively means placing the VC data in a different
queue.

There are two types of “worker” VIs: Communication
VIs and Processing VIs. These will run as separate tasks
if LabVIEW uses parallel execution. Communication VIs
get a VC from the communication queue and check if
there is new data available in the socket. If yes, it reads
the data and places the VC into the processing queue. The
processing VI gets VCs from processing queue and
processes it by updating the record data and placing the
VC back onto the communication queue. A typical
configuration would launch several (three as on Fig. 1) of
the communication VIs and one processing VI. This
effectively allows reading simultaneously by different
TCP connections, so if one connection is having trouble it

will not affect the workflow. It is possible to launch as
many communication VIs as one wishes (as long as the
OS gives LabVIEW the resources), but it stops making
sense if the number of “workers” is higher than the
number of connections (VCs) to the server.

In addition to these two “threads” one has to launch a
TCP listening VI and two UDP related VIs. The first
listens for TCP connections and if a connection is made it
creates a new VC and places it into the communication
queue. The UDP VIs listen for UDP search messages and
reply to them. Receiving and sending are performed by
two different VIs.

Demo Program
This demonstration program initializes the CA server,

creates FLOAT waveform, FLOAT scalar and LONG
scalar records. Then it starts the server that initializes all
the queues and starts the VIs described in previous
section.

After that it enters a loop that generates a sine wave
with random noise and publishes the waveform and its
integral.

Figure 2 shows a diagram of this program. One can see
that the end user part is quite straightforward and self-
explanatory. Records are created within LabVIEW and do
not require any EPICS knowledge to configure. This
allows a developer completely unfamiliar with EPICS to
quickly publish data from his/her LabVIEW program onto
the network.

Figure 1: CA server configured with three communication VIs (“TCP Talk”) and one processing VI (“Process MSG”).

Proceedings of ICALEPCS2009, Kobe, Japan THP018

Control System Evolution

713

Figure 2: EDM screen (right side) displaying data from LabVIEW server (left side).

Figure 3: EDM screen (right side) displaying data from LabVIEW server (left side).
The standard tools like (EDM) will be able to get this

data and display it – Fig. 3 illustrates EDM screen getting
data from CA server.

RESULTS AND FUTURE DEVELOPMENT
We were able to implement this CA server using

LabVIEW internal VIs for CA protocol communication.
The maximum data throughput was about 160Mbit/s
which exceeds our needs. The server was tested on
Windows, Linux, Mac OS X, CompactRIO. We did not
test LabVIEW Real Time on the PC, but we expect no
issues there. We made an attempt to put it into embedded
system running an Analog Devices DSP processor, but
encountered a LabVIEW bug that was fixed in LabVIEW
2009.

The current version is not a full implementation of CA
protocol, but already can be useful.

Our future plans include full implementation of the CA
protocol and development of a native LabVIEW CA
client.

ACKNOWLEDGEMENTS
ORNL/SNS is managed by UT-Battelle, LLC, for the

U.S. Department of Energy under contract DE-AC05-
00OR22725.

REFERENCES
[1] Experimental Physics and Industrial Control System

http://www.aps.anl.gov/epics/.
[2] D. Thompson and W. Blokland, “A Shared Memory

Interface between LabVIEW and EPICS”,
ICALEPCS 2003, pp275-277. Gyeongju, Korea, Oct
13-17 2003.

[3] Channel Access for Java
 http://cosylab.com/solutions/particle_accelerators/Ch

annel_Access_for_Java.
[4] National Instruments Big Physics

http://www.ni.com/physics/.

THP018 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

714

