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Abstract 
LabVIEW is becoming increasingly popular in 

Accelerator Control Systems. Interfacing of LabVIEW 
with EPICS could be done in several ways. We provide a 
native LabVIEW implementation of the CA protocol. 
Such an approach greatly simplifies the development of 
EPICS[1] controlled devices in LabVIEW. 

INTRODUCTION 
The Spallation Neutron Source (SNS) is a particle 

accelerator driven pulsed neutron source. The 
Experimental Physics and Industrial Control System 
(EPICS) is used as control system for the accelerator 
complex. There are more than 300 devices being 
controlled by Windows based PCs. These include: Beam 
Current Monitors, Beam Position Monitors, Wire 
Scanners and more. National Instruments’ (NI) LabVIEW 
is used as the software development environment for 
these PCs. To integrate with EPICS clients, e.g. operator 
screens in the SNS control room, a communication 
interface between LabVIEW and EPICS is required. 

DIFFERENT TYPES OF INTERFACES 

Shared Memory 
Currently our main method of connecting LabVIEW 

with EPICS is the EPICS Shared Memory Interface[2]. A 
DLL provides device support by sharing memory with the 
LabVIEW process. Thus we have 2 relatively independent 
processes running simultaneously: EPICS server and the 
LabVIEW runtime. This approach has obvious 
advantages: 

• Having a standard full EPICS Input/Output 
Controller (IOC) server allows leveraging the power 
of records processing and the features  that comes 
with it. 

• All Channel Access (CA) clients work seamlessly 
because clients “see” a standard IOC. 

This mechanism also has disadvantages: 
• The implementation is OS specific. Although EPICS 

itself is ported to different platforms and LabVIEW 
has versions for different platforms this binding layer 
has to be implemented for every OS. While this is 
surely possible, a big effort is needed. 

• One needs to support two mapped data structures: 
IOC records and LabVIEW variables. 

• The installation and maintenance of versions of the 
EPICS Shared Memory IOC and LabVIEW libraries 
is required. 

• Having two processes makes debugging more 
difficult than having a single process.  

CA Server 
Alternatively, instead of having a full IOC, one can use 

the CA server only. It won’t have record processing 
power, but will publish data onto the network. All 
standard CA clients will be able to communicate with 
this. While there is a C++ version of the CA server, it is 
possible to implement a CA server in any language that 
supports TCP/IP and UDP/IP communication. A good 
example of this is the Java CA library developed by 
Cosylab[3]. Since LabVIEW has full functionality for 
TCP/IP we tried to implement the CA protocol 
specification internally in LabVIEW. 

NI Datalogging and Supervisory Control 
Module 

NI has developed several implementations of the 
EPICS CA server for different OSs. It is part of the 
Datalogging and Supervisory Control Module [4]. It 
follows the concept of shared memory method. So, for 
example, the Windows version requires installation of 
additional Windows service. 

PURE LABVIEW CA SERVER 

Requirements 
Careful analysis of our EPICS connectivity needs led to 

the following requirements: 
• We need a CA server, not a full IOC (since all logic 

is implemented in LabVIEW code rather than in 
EPICS record processing) 

• The server should be able to host about 2000 PVs. 
We are not expecting a single system to multiplex 
with large numbers of detectors. Our most typical 
use case is one device per IOC (e.g. every BCM is 
controlled by dedicated PC). 

• The data transfer rate we need is about 10 Mbit/s 
(maximum 50Mbit/s for video systems) 

• The server has to be compatible with all platforms 
LabVIEW runs on: Windows, Linux, Mac OS, 
LabVIEW Real Time on CompactRIO and PCs, and 
maybe even on embedded systems. 

We never use record processing so we can easily give up 
this functionality of IOC.  

In order to evaluate possibility of creation of CA server 
in LabVIEW we set up a pilot project that doesn’t fully 
comply with CA specifications but still allows us to 
estimate the performance of such approach. Here are main 
features of our pilot server: 

• No CA Repeater (we probably won’t implement it 
anyway because we will hardly ever have several 
IOCs running on one host) 

• No beacons  
• Support UDP channel search 
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• Support two CA types (FLOAT and LONG) 
• Support DBR_STS and DBR_TIME 
• Support put, get and monitor 

Server Architecture 
We used the LabVIEW internal threading mechanism 

as much as possible during the design of the server 
architecture. Rather than using classical threads we use 
simultaneously running VIs that use queues for sharing 
data. Of these data, there are two main types: Virtual 
Circuits (VC) and Records. The VC is the same concept 
as a VC in the standard CA library, i.e. the data supports a 
TCP client connection to a server. The record data is not a 
fully functional EPICS record, but does hold an up to date 
value and the state of the record. Every VC can be in 
either a communication state or processing state. This 
state information is maintained by the presence of the VC 
data in one of two different queues. So switching states 
effectively means placing the VC data in a different 
queue.  

There are two types of “worker” VIs: Communication 
VIs and Processing VIs. These will run as separate tasks 
if LabVIEW uses parallel execution. Communication VIs 
get a VC from the communication queue and check if 
there is new data available in the socket. If yes, it reads 
the data and places the VC into the processing queue. The 
processing VI gets VCs from processing queue and 
processes it by updating the record data and placing the 
VC back onto the communication queue. A typical 
configuration would launch several (three as on Fig. 1) of 
the communication VIs and one processing VI. This 
effectively allows reading simultaneously by different 
TCP connections, so if one connection is having trouble it 

will not affect the workflow. It is possible to launch as 
many communication VIs as one wishes (as long as the 
OS gives LabVIEW the resources), but it stops making 
sense if the number of “workers” is higher than the 
number of connections (VCs) to the server. 

In addition to these two “threads” one has to launch a 
TCP listening VI and two UDP related VIs. The first 
listens for TCP connections and if a connection is made it 
creates a new VC and places it into the communication 
queue. The UDP VIs listen for UDP search messages and 
reply to them. Receiving and sending are performed by 
two different VIs.  

Demo Program 
This demonstration program initializes the CA server, 

creates FLOAT waveform, FLOAT scalar and LONG 
scalar records. Then it starts the server that initializes all 
the queues and starts the VIs described in previous 
section. 

After that it enters a loop that generates a sine wave 
with random noise and publishes the waveform and its 
integral. 

Figure 2 shows a diagram of this program. One can see 
that the end user part is quite straightforward and self-
explanatory. Records are created within LabVIEW and do 
not require any EPICS knowledge to configure. This 
allows a developer completely unfamiliar with EPICS to 
quickly publish data from his/her LabVIEW program onto 
the network. 

Figure 1: CA server configured with three communication VIs (“TCP Talk”) and one processing VI (“Process MSG”). 
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Figure 2: EDM screen (right side) displaying data from LabVIEW server (left side). 
 
 

Figure 3: EDM screen (right side) displaying data from LabVIEW server (left side). 
The standard tools like (EDM) will be able to get this 

data and display it – Fig. 3 illustrates EDM screen getting 
data from CA server. 

RESULTS AND FUTURE DEVELOPMENT 
We were able to implement this CA server using 

LabVIEW internal VIs for CA protocol communication. 
The maximum data throughput was about 160Mbit/s 
which exceeds our needs. The server was tested on 
Windows, Linux, Mac OS X, CompactRIO. We did not 
test LabVIEW Real Time on the PC, but we expect no 
issues there. We made an attempt to put it into embedded 
system running an Analog Devices DSP processor, but 
encountered a LabVIEW bug that was fixed in LabVIEW 
2009.  

The current version is not a full implementation of CA 
protocol, but already can be useful.  

Our future plans include full implementation of the CA 
protocol and development of a native LabVIEW CA 
client. 
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