
A MULTI-AGENT SYSTEM FOR BUILDING LARGE-SCALE
DISTRIBUTED, HIERARCHICAL CONTROL SYSTEMS*

V. Gyurjyan, C. Timmer, D. Abbott, G. Heyes, E. Jastrzembski, B. Moffit, E. Wolin,
Jefferson Lab, 12000 Jefferson Ave. MS-12B3, Newport News, VA 23606, U.S.A.

Abstract
The Multi-Agent Framework for Experiment Control

Systems (AFECS) is a pure Java based software
framework for designing and implementing distributed
control systems. AFECS creates a control system
environment as a collection of software agents behaving
as finite state machines. These agents can represent real
entities, such as hardware devices, software tasks, or
control subsystems. A special control oriented ontology
language (COOL), based on RDFS (Resource Definition
Framework Schema) is provided for control system
description as well as for agent communication. AFECS
agents can be distributed over a variety of platforms.
Agents communicate with their associated physical
components using range of communication protocols,
including tcl-DP, cMsg (publish-subscribe
communication system developed at Jefferson Lab),
SNMP (simple network management protocol), EPICS
channel access protocol and JDBC.

INTRODUCTION
The CEBAF Online Data Acquisition (CODA) system

continues to satisfy the ever growing requirements of the
physics programs at Jefferson Lab (JLAB)[1], and
demonstrates very good performance and reliability. On
the other hand, the control component of CODA has not
evolved much over the years partly due to the fact that run
control has been dependably performing its simple task of
controlling the data acquisition (DAQ) state machine.
However, future experiments at JLAB have new
expectations from run control, namely:

1. integration of new components into the DAQ
system

2. creating feedback between slow controls and
DAQ components

3. building expert systems, with their specific state
machines

4. designing online data quality monitoring
5. coordination with data production processes
6. putting together online data calibration and

distribution systems
7. creating alarm systems, etc.

To satisfy these challenging requirements, the Jefferson
Lab DAQ group has developed a framework for building
complex, hierarchical control systems. The unique feature
which sets this framework apart from conventional
control systems is its incorporation of intelligent agent
concepts. An agent is a software entity capable of acting

intelligently on behalf of a component or user, in order to
accomplish a given task. A group of specialized agents
cooperate and work together to solve problems that are
beyond their individual capabilities.

AFECS provides a group of normative agents for agent
management and coordination. These manager agents are
responsible for creating and deploying agents on a
platform, educating them (based on knowledge provided
by the user), distributing them over the network, and
recovering them in case of unsatisfactory behaviour. The
efforts of these specialized agents ensure control system
reliability and robustness.

Different types of “stem cell” agents are also provided
by the framework. After creation they are specialized by
the control system designer to become representative
agents for various real world components of the control
system.

DESIGN ARCHITECTURE
An experiment can be thought of as a well-defined set

of components, each with their specific behaviors. These
behaviors can be represented by simple, finite state
machines. Control of the experiment is equivalent to
controlling and synchronizing the state changes of those
state machines, and AFECS provides the facilities to do
this.

AGENTS
Control systems designed using AFECS are composed

of agents that are groups of threads in a single process or
separate processes running on different machines. The
architecture of the AFECS based control system can be
seen as a hierarchy of agents, each with responsibility for
a component of the experiment. An agent encapsulates
control/monitoring algorithms, as well as external
interface details of the controlled, real-world component.
This provides clear separation of the control and
application layers of each component, and seamless
integration of legacy software components into the
experiment control environment (platform). Agents are
active objects, having more than one behavior, and can
engage in multiple, simultaneous activities. Their
behaviors can be added or removed at run time.

An agent’s state is a simplified external view of the
current working condition of the component under its
responsibility. Each agent is capable of receiving control
messages from other agents or the outside world. These
messages can cause an agent to change or monitor the
state of the physical component. Agents can be organized
into hierarchical tree structures that reflect the basic
organization of the experiment control system itself. An
agent in the tree can have only one supervisor agent and

*Notice: Authored by Jefferson Science Associates, LLC under U.S.
DOE Contract No. DE-AC05-06OR23177. The U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce this manuscript for U.S. Government purposes.

Proceedings of ICALEPCS2009, Kobe, Japan THP002

Control System Evolution

679

can supervise many others. At the top of the tree is a
single agent (grand supervisor), which represents the
overall state of the entire experiment. A control system
diagram is shown in Figure 1.

AGENT CONTAINERS
The software architecture of the system is based on the

coexistence of multiple JVMs (Java Virtual Machines).
Software agents are grouped into virtual clusters or
domains according to their specialized functionalities.
Agents in the same domain may share a single JVM,
which plays the role of a basic agent container. An agent
container provides a complete run time environment for
agent execution and allows them to concurrently run on
the same host. Agents in the same domain may also be
distributed over multiple containers.

The Front-End is a special container running the
normative agents, taking care of agents’ management and
overall coordination of the system. It also maintains
agents’ registry database, and agent discovery facilities.

NORMATIVE AGENTS
The normative administrative (NA) agent (see figure 1)

is responsible for agent management and recovery. This
agent is in charge of creation, recovery and removal of
agents, agent clusters and entire containers. It will also
repair any failed agents or containers, thus achieving
platform stability and fault tolerance.

The normative registration agent (NR) stores agent’s
registration information, including agent physical address
and description of provided services. This agent is vital
during agent discovery processes.

The normative configuration (NC) agent is the interface
between a specific control system implementation and the
framework. It enables the integration of non-agent
software controls into an agent system. This normative
agent will coordinate the creation and deployment of each
physical component representative agent (A), as well as
provide them with knowledge in the form of ontology.
Ontology consists of instantiated classes generated from
physical component state machine descriptions, which, in
turn, are written using the control oriented ontology
language (COOL). Agents in the platform can then
communicate with each other by exchanging ontology
objects and have each of them invoke actions on
underlying hardware or software components. AFECS
allows dynamic reconfiguration of the control
environment in real time by auto-generating or
specializing specific control agents whenever new control

components are added, or control relationships are
changed.

AGENT HIERARCHI
Coordination of groups of agents is accomplished by

Supervisor agents (S). They ensure that partial, local
solutions to the control problems of a specific domain are
integrated into global experiment control. Agents in the
hierarchal tree transmit messages between themselves
containing commands and status information. Normally, a
human operator sends commands to the “grand
supervisor” agent, which forwards them to supervisor
agents down the tree, who in turn forward them to
component agents and so on. The results of the
commands are sent back up the tree so that the human
operator is made aware of any changes in the state of the
system. Any agent in the hierarchy can perform actions
on receiving a command and can return the results from
that command.

IMPLEMENTATIONS
The new run control system for the JLAB data

acquisition system (CODA) has been developed using
AFECS [2]. This run control system is designed to
configure, control, and monitor Jefferson Lab
experiments. It controls data-taking activities by
coordinating the operation of DAQ components (readout
controller, event builder, event recorder, event transfer,
etc.). The graphical user interface (GUI) for run control is
intended to view the status of the data acquisition system
and its components and to allow the user to control its
operation. The GUI was developed not only for general
users, such as shift operators, but also to provide DAQ
experts the ability to control and debug the system. The
run control system can have multiple instances of GUIs
associated with a particular experiment. However, only
one GUI can be a master, capable of controlling the DAQ
system. Figure below shows a snapshot of the GUI in
action. The GUI interacts with agents through the cMsg
publish subscribe communication protocol [3].

AFECS provides support for bidirectional invocations
of web services through java servlets for communicating
with agents. AFECS Java servlets use cMsg to
communicate with the agent platform of the experiment.
The web site http://clasweb.jlab.org/clasonline/rc/hallB
/e-cr.htm, dedicated to the development of the CLAS12
Experiment Control System, is an example of the AFECS
visualization in action.

THP002 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

680

Figure 1: A control system block diagram. IPC – Inter Process Communication protocols (cMsg, DP, SNMP, JDBC,
shell), used between agent and physical component. ACC – Agent Communication Channel: cMsg[3] used for inter
agent communications. NR, NA, NC – normative agents for platform registration, administration and configuration
respectively.

SUMMARY AND CONCLUSIONS
A Java based software framework for designing and

implementing hierarchical, distributed control systems
has been developed using intelligent agent technologies.
The framework encourages abstraction, encapsulation,
and overall system modularity.

The AFECS framework provides a special language to
describe a hierarchical control structure, as well as control
logic and finite state machines.

This framework has been successfully used to develop
a new run control system for the JLAB data acquisition

toolkit and a CLAS experiment web-based monitoring
system.

REFERENCES
[1] Heyes G, et al., “The CEBAF on-line data acquisition

system”, Proceedings of the CHEP 1994 Conference.
[2] V. Gyurjyan, et al., “Jefferson Lab Data Acquisition

Run Control System”, Proceedings of the CHEP
conference. CERN-2005-002, Volume 1, page 151.

[3] E. Wolin, et al., “cMsg Publish/Subscribe Package
for Real-Time and Online Control Systems”,
Proceedings of the 14th IEEE-NPSS Real Time
Conference, Stockholm, Sweden 2005.

CODA ROC

CODA EMU

EPICS IOC 1

EPICS CAG

Trigger soft

Trigger hard

Online ANA

A

A

A

A

A

A

A

S

S

S

S

S

NR NA NC

Physical
Components Normative Agents

Supervisor agent

 Grand supervisor agent

Front-End

 ACC

IPC

AFECS Platform

IPC

GUI/user IPC

WEB

IPC

Domain

Container

Proceedings of ICALEPCS2009, Kobe, Japan THP002

Control System Evolution

681

