
TOWARDS 3D HUMAN-MACHINE-INTERFACES:
GENERIC 3D VIEWER EXTENSION

FOR THE CONTROL SYSTEMS DISPLAYS AT CERN

P. Golonka, CERN, Geneva, Switzerland

Abstract
The 3D-Viewer component of the PVSS1 [1] JCOP2

Framework [2][3] allows PVSS operator consoles at
CERN to display three-dimensional, interactive, animated
graphics. Being completely generic, the viewer is
applicable to a variety of situations, from being used in a
synoptic view of the status of a system through to the 3-D
customization of an individual HMI element such as a
graph or a histogram. The 3D-Viewer is a production
system component which showcases the integration of
platform-independent technologies, in our case PVSS,
Qt[4] and Open Inventor[5]. The viewer moreover gives
the operator full control of the content and appearance of
the "scene" being displayed, and permits dynamic
modification at run-time, through interaction with objects
in the scene. The complete functionality of the viewer is
visible through the clean, high-level interface of PVSS’
graphical objects and scripts, and makes for a seamless
integration with the rest of the application.

INTRODUCTION, MOTIVATION
Control and Monitoring systems nowadays often run on

PCs, the graphics cards of which are capable of efficient
rendering of complex 3-dimensional graphics. Even
though the 3D elements have been available in various
SCADA products for some time now [6][7][8][9], their
use in the HMI seems to be limited.

Studies such as [10] suggest that 3D visualization is not
always a cost-effective and optimal solution for
applications in industry – the classical 2D user interfaces
seem more applicable for typical use in industrial
applications. The area where 3D visualization
demonstrate its potential superiority is where complex
systems need to be presented. The complexity, in turn, is
the outstanding feature of many control and monitoring
systems for the detectors and accelerators at CERN.
Therefore the idea of 3D visualizations used as synoptic
views for Detector Control Systems of the large LHC
experiments appeared in a natural way already some time
ago.

PVSS [1], a commercial SCADA3 product widely
deployed and standardized at CERN, does not provide an
out of the box component for 3D visualization. However,
it allows the use of third-party user interface extensions
on Windows platform through the Microsoft ActiveX
component technology. The first 3D visualization for the

1PVSS: Process Control and Visualization SCADA [1]
2JCOP: Joint COntrol Project
3SCADA: Supervisory Control And Data Acquisition

CMS4 Detector Control System [11] was implemented as
a Java3D applet, embedded in PVSS through a dedicated
ActiveX bridge container.

Figure 1: CMS Detector Control System featuring the
original Java prototype of the 3D Viewer.

The project found interest in DCS groups of other
experiments, yet soon an important limitation was
encountered: the control rooms of the LHC experiments
run PVSS on the Linux platform, where embedding of
ActiveX components is not possible. The portability
became a showstopper for the adoption of the project.

The situation changed significantly after the release 3.5
of PVSS: the User Interface part was re-implemented
using the Qt[4] libraries, known for their portability and
extendibility. PVSS 3.5 introduced a native mechanism
for extension of its user interface, called EWO5. It
allowed the delivery of custom UI elements developed
with the Qt libraries in C++. Moreover, the same source
code could be used to build the EWO's both for Windows
and Linux.

The availability of the EWO technology made it
possible to come back to the idea of 3D visualization in
PVSS UI. Based on the concepts of the original Java3D
prototype, the 3D Viewer EWO for PVSS was developed
as a part of the JCOP Framework project.

In addition to the fascinating 3D visualization in PVSS-
based control systems, the project became a showcase for
the integration of standardized technologies and code
reuse.

This article introduces the JCOP Framework 3D Viewer
component, discusses the main concept and presents the

4CMS: Compact Muon Solenoid detector at CERN
5EWO: Enhanced Widget Object

THC001 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

662

interesting use cases. In the appendix additional
background material about the technologies employed,
namely the Open Inventor[5] is provided.

JCOP FRAMEWORK 3D VIEWER
The JCOP Framework 3D-Viewer component [12][13]

allows the extension of the PVSS user interface panels
with a new programmable UI element (i.e. a widget),
capable of displaying a 3-dimensional, interactive view of
a scene composed of various geometrical objects (also
called shapes).

The content of the scene is fully dynamic: the shapes
can be added, removed, or their properties (such as
geometry/size, colour, transparency) modified at runtime.
These actions can be linked to events received by PVSS,
or to user commands. The user naturally navigates
through the scene using the mouse and the keyboard. The
camera can move in all directions, and change the
orientation in response to user navigation or to
programming commands. The widget is also capable of
passing the mouse-click events to the PVSS user
interface.

Both the modification of the scene contents and
properties and the event passing are interfaced with the
native mechanisms of PVSS; this makes the integration of
this widget easy for any PVSS application developer.

Apart from its portability, what makes our project
distinct from other 3D components is that it is generic.
Instead of binding it to a particular data file format, or
CAD application to construct the content of the 3D scene,
we opted for creation of a simple-to-use, high level API6,
allowing for dynamic creation and manipulation of the
scene content. It is then the role of the PVSS application
developer to get the geometry data from some source, and
use it to create the scene. The geometry information can
be obtained from an external source, such as a database or
a XML file, using the functionality already available in
PVSS. It can also be generated adhoc (e.g. bars of a
histogram), or based on some model. An example of such
a model can be a simplified view of a detector with
assumed geometrical properties, where the exact
geometry is not of importance, and where only the main
functional parts need to be plotted.

Even though the 3D Viewer is a generic tool, we
focussed our efforts on an implementation that would fit
with the requirements for the main use case: generating
animated synoptic views of the detector- or accelerator-
subsystems being controlled. With this in mind, we
implemented the set of shape types that are typically used
in computer geometry description for high-energy
physics. Therefore, we were able to reuse the code of the
HEPVis package[14].

The Programming Interface of PVSS Side
An important step in the project was to define the

programming interface exposed to PVSS for the 3D
Viewer and decide on the data model used. The functions

6API: Application Programming Interface

are organized around the concepts of shapes, shape types
and properties.

A shape type defines the class of geometrical objects
being available for the construction of the scene, such as
boxes, tubes or trapezoids.

The scene displayed in the 3D Viewer contains the
instances of shape types: the shapes. Each shape is
identified by a unique name, which is used to refer to it.
New shapes may be added to the scene or removed from
it dynamically.

Each shape has a set of properties. There is a common
set of properties available for all shapes: geometry (i.e.
position and rotation), colour and transparency. In
addition, each shape type has specific properties that
ultimately define its figure. Examples of these properties
are the radius for spheres and cylinders, the edge-lengths
for the boxes, etc.

The current value of any property of any shape can be
queried, and altered at any time. This allows the
animation of the shapes. For example, a box that
represents a bin of a histogram can be resized, to visualize
the change in bin contents. The colour of a shape
representing a piece of a detector can be changed to red to
mark its alarm or error state. A group of shapes may be set
to be semi-transparent to uncover the part of the detector
that needs attention instead of hiding it. This allows to
visually enhance a particular area of interest (see Figure
2) while maintaining the overall orientation and view of
the complete detector.

Figure 2: An example of detector visualization with 3D
Viewer; colours are used to display the status of elements;
transparency applied to the outer layer allow to uncover
the internal part, which needs attention.

The shapes can be arranged in groups and identified by
a unique name. Property modification operations acting
on colour of transparency can then be applied to a group
and the change is propagated to all of the shapes
belonging to the group. This simplifies the animation
code: instead of applying the colour-change code to a
large set of shapes, it is sufficient to apply it to the group.
In the current implementation, a shape may (but doesn't
need to) belong to only one group.

The 3D Viewer widget can operate in two modes:
navigation or interaction. In the navigation mode the
mouse is used to navigate through the scene: it is possible
to rotate, pan and zoom into the scene in an intuitive way.

Proceedings of ICALEPCS2009, Kobe, Japan THC001

Operational Tools

663

This corresponds to the modification of camera position
and direction.

In the interaction mode, the mouse is used to interact
with currently visible shapes. The camera remains steady,
and mouse clicks select a shape. Whenever a shape is
clicked, an asynchronous notification is posted to PVSS,
and a custom script can be executed, The name of the
shape that was clicked is passed to the script as an
argument. This follows the standard programming
techniques for the native PVSS widgets such as tables,
push buttons, etc.

The fact that the mouse-click event is passed to PVSS
opens the possibility to trigger different types of
interactions; for example, in response to a click an action
could be executed on the piece of hardware represented
by the shape or a new PVSS window can be opened to
display the detailed information about the state of the
device associated with clicked shape.

For non-interactive displays, where the camera position
should be fixed the position and rotation of the camera in
the scripting code. The current view can also be smoothly
changed using the seek to shape functionality: the camera
will fly to a position and an orientation where the
specified shape is shown in the centre of the view.

APPLICATIONS AND USE CASES

Detector Synoptic View
The initial driving force for the development of the 3D

Viewer was to enable the creation of interactive, animated
3-dimensional synoptic views of sub-systems of the large
LHC experiments. We expected that modelling the
geometry of objects of such a complexity from scratch
solely to visualize them would be a prohibitively tedious
task.

Surprisingly, the visualization of the on-line Detector
Control System (DCS) of large parts of the CMS and the
ATLAS detectors became possible using geometry data
which had been prepared for the off-line data analysis.

Following the original concept of the CMS Detector
Control System Team [11], the detailed data describing
the physical and logical volumes composing the parts of
the detector is retrieved from an Oracle database, using a
database-access PVSS extension, already implemented in
the scope of the JCOP Framework project. The mapping
between the shapes and the corresponding entities in the
DCS system (such as the nodes of the Finite State
Machine7, or devices) is also retrieved, and the shapes are
added to the 3D Viewer, with appropriate naming and
grouping. The convention used to name the shapes and
groups allows for the bi-directional mapping between the
control system and the 3D model and allows the
activation of the mechanisms linking the two. Once
everything is set up, the display reacts to the changes of
device properties (such as alerts) or operational states, by
changing the look (colour, transparency) of the related
shapes. Similarly, a link in the opposite direction is

7FSM: Finite State Machine tool of the JCOP Framework

established: clicking on a specific shape in the 3D display
opens the operational panel for the associated device,
allowing for intuitive selection of the device on which a
operation needs to be performed.

Figure 3: Examples of CMS and ATLAS detector
visualizations,based on the data from geometry databases.

Synoptic View of the LHC Accelerator
Like for the case discussed above, an animated 3D

synoptic view of the LHC could be constructed for the
PVSS-based application like cryogenics, quench
protection system, or power converters, replacing the
pseudo-perspective view presently used. For the LHC, the
detailed geometrical data is available, in the form of
engineering drawings, in the CERN Drawing Directory
database.

Rack Control Application
One of the applications developed in scope of the JCOP

project is the Rack Control Application. Recently, for the
CMS experiment, it has been upgraded to make use of the
3D Viewer to display the real-time state of the equipment
racks. All the required geometry data, including the real
position of the racks inside the buildings, is taken from a
construction database; the mapping to the controls items
was easily established through a naming convention.

THC001 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

664

Figure 4: CMS Rack Control Application.

Charts, Graphs, Histograms
The 3D Viewer has also found its applications in the

data visualization field. Already one of the early
prototypes was used to implement a correlation-showing
histogram (2-dimensional plane for parameter space, bin
contents in the 3rd dimension). The tight integration of the
3D Viewer with the PVSS native mechanisms made the
histogram react to live data changes with no extra effort.

Figure 5: Example of 2D live histogram, with colour and
transparency effects

The concept can be extended to a variety of data
presentations: bar charts, pie charts and trend plots.

Figure 6: Example of a pie chart and a trend plot.

Others
Many 3D-enabled SCADA applications make use of a

virtual-reality based training tools; although this was not
needed for the cases described above, virtual-reality based
training applications can be implemented exploiting the
generic nature of the widget.

Furthermore, the 3D Viewer can be used as a generic
widget, playing the role of standard widgets such as push
buttons, or LED indicators, adding a non-trivial animation
and look thus making the UI experience richer.

ACKNOWLEDGEMENTS
I would like to thank:

− Robert Gomez-Reino (CERN CMS Central DCS
Team)
− for initial concept and the Java3D prototype

of the 3D Viewer;
− for the showcases of use of the widget in

CMS DCS System
− many conceptual discussions leading to the

implementation of the 3DViewer.
− Alvar Cuevas i Fajardo, who implemented the

first version of the widget under my supervision,
during his CERN Technical Student stay.

APPENDIX: TECHNOLOGIES

Open Inventor
Open Inventor [5][15] is a object-oriented 3D graphics

programming API. It was designed and implemented in
90s by SGI8. It aimed at making the 3D programming
more efficient and convenient, by providing a higher-level
layer on top of OpenGL, a lower level cross-platform API
for 2D and 3D computer graphics.

Whereas OpenGL is targeted for fast rendering of
simple lists of polygons in the so called immediate mode,
Open Inventor applies the retained mode approach: the
client calls do not directly cause the rendering, but instead
modify an internal model built of higher-level 3D
geometrical objects and maintained in its data space. This
allows the optimizations of the actual rendering, which is
performed using OpenGL avoiding unnecessary data
transfers or occlusion culling (aka hidden surface
removal: avoiding the rendering of objects that are
entirely behind other opaque objects).

As a result, by using Open Inventor it is possible to fit
the 3D visualization program in a few hundred lines of
C++ code, offloading the programmer's efforts
significantly, when compared with OpenGL. However,
this comes at a price: the rendering implemented by
manually-tweaked OpenGL code would often be faster
that the one of Open Inventor. In any case, the
performance of Open Inventor is sufficient and
satisfactory for typical application, and often surpasses
the OpenGL implementations coded by non-experts.

8SGI® : Silicon Graphics International Corp.

Proceedings of ICALEPCS2009, Kobe, Japan THC001

Operational Tools

665

Open Inventor delivers a library of high-level objects
such as geometrical shapes, cameras, light sources, etc. It
is also possible to extend Open Inventor with custom
geometrical objects and mechanisms.

Since August 2000, the code and specification of Open
Inventor have been released by SGI under an open source
license. However, for the 3DViewer we opted to choose
another implementation of the Open Inventor API: the
Coin3D library [16], which is backward compatible with
Open Inventor 2.1.

Since 2009, the proprietary development and support of
the Open Inventor standard is in the hands of an
independent entity called VSG[17]. Although it is not
widely known as OpenGL, Open Inventor establishes the
de facto standard for 3D visualization software for science
and engineering. Numerous specialized extensions are
also available.

HEPVis
The HEPVis[14] library extends the set of geometrical

shape types of Open Inventor with the ones typically
needed by high-energy physics applications. It is
commonly used by numerous event-display and detector-
display programs, like Atlantis (the ATLAS experiment
event display) or Iguana (the CMS event display). The
parameterization of the geometrical shapes origins from
the GEANT detector description and simulation
package[18][19] widely used by the high energy physics
community for more than a decade now. In particular, the
shape types and parameterizations implemented by
HEPVis match exactly the ones used by GEANT-based
simulations and off-line data analysis software. This
makes the use of HEPVis an obvious choice for 3D
Viewer's main use cases which is display detector views:
all the parameters extracted from the database could be
used directly as shape parameterization for the 3D
Viewer, with no approximation or transformation.

REFERENCES
[1] PVSS: Process Control and Visualization SCADA,

http://www.pvss.com
[2] The JCOP Framework Project , http://cern.ch/en-dep-ice-

scd/Projects/Framework/welcome.html
[3] "The JCOP Framework", O.Holme, M. Gonzalez-Berges,

P. Golonka, S, Schmeling, Proceedings of 10th
ICALEPCS Conference on Accelerator & Large
Experiment Control Systems, Geneva, 10-14 October
2005

[4] Qt cross-platform application and UI Framework,
http://qt.nokia.com/products/

[5] Open Inventor, http://oss.sgi.com/projects/inventor/
[6] PCVue, http://www.arcinfo.com
[7] "ARC Informatique's Innovation in SCADA" , Arc Tech

Brief 2006
[8] Genesis64 suite of 64-bit HMI/SCADA software

solutions,
http://www.iconics.com/products/genesis64.asp

[9] ProcessLife Operations 3D SCADA,
http://www.vrcontext.com/processlife/3d-scada.html

[10] "Use Cases and Concepts for 3D Visualization in
Manufacturing" B. Wolf, G. Mofor, J. Rode SAP AG,
Lecture Notes in Informatics (LNI) P-110 2007

[11] "CMS DCS Design Concepts", R. Arcidiacono,V.
Brigljevic,E. Cano,S. Cittolin,S. Erhan,D. Gigi,F.
Glege,R. Gomez, Proceedings of 10th ICALEPCS
Conference, Geneva, 10-14 Oct 2005

[12] JCOP Framework 3D Viewer widget, http://cern.ch/en-
dep-ice-
scd/Projects/Framework/Download/Components/3DView
er/welcome.html

[13] "3D viewer offers another dimension for PVSS" P.
Golonka and A. Cuevas i Fajardo , CERN Computer
Newsletter, April-May 2008
http://cerncourier.com/cws/article/cnl/34864

[14] HEPVis class library extension to the Open Inventor
toolkit, http://openscientist.lal.in2p3.fr maintained in the
Open Scientist code base

[15] "The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor, Release 2", Josie
Wernecke, ISBN-10: 0201624958

[16] Coin3D: 3D Graphics Developer Kit by Konsberg SIM
AS, http://www.coin3d.org

[17] Visualization Sciences Group, http://www.vsg3d.com/
[18] GEANT - Detector Description and Simulation Tool,

http://wwwasd.web.cern.ch/wwwasd/geant/
[19] “Geant4 - a simulation toolkit”, Geant 4 Collaboration,

THC001 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

666

