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Abstract 
A significant level of automation and flexibility has 

been added to the ACNET control system through the 
development of a Java-based Finite State Machine (FSM) 
infrastructure. These FSMs are integrated into ACNET 
and allow users to easily build, test and execute scripts 
that have full access to ACNET’s functionality. In this 
paper, a description will be given of the FSM design and 
its ties to the Java-based Data Acquisition Engine (DAE) 
framework. Each FSM is part of a client-server model 
with FSM display clients using Remote Method 
Invocation (RMI) to communicate with DAE servers 
heavily coupled to ACNET.  A web-based monitoring 
system that allows users to utilize browsers to observe 
persistent FSMs will also be discussed. Finally, some key 
implementations such as the crash recovery FSM 
developed for the Electron Cooling machine protection 
system will be presented.  

INTRODUCTION 
Operation of an accelerator control system involves the 

creation of many transient and persistent tasks. These 
tasks generally access and integrate various components 
of the control system, such as accelerator devices, 
databases, timing systems, etc. A Finite State Machine 
(FSM) framework with the capacity to respond to state 
and input data and with hooks into different parts of the 
control system provides a mechanism to generate these 
tasks in a simple and reusable form. 

A Java-based Data Acquisition Engine (DAE) 
infrastructure [1] has been used at Fermilab for many 
years to provide a Java layer to ACNET data acquisition 
and control. This infrastructure has been extended to 
provide a generic FSM framework embedded in a client-
server model. FSM client applications start jobs on remote 
FSM servers which collect and process all input data and 
return state and requested data to the client. This 
framework is illustrated in Figure 1. These FSMs provide 
users with the ability to quickly build, test and deploy 
reusable tasks. 

This paper will provide a description of the FSM 
structure and functionality, a detailed look at the client-
server framework and an overview of the web tier that 
allows for the monitoring of persistent FSMs. 
Additionally, several key FSM implementations will be 
covered, including a detailed illustration of the crash 
recovery FSM that serves as the regulation component of 
the Pelletron’s Machine Protection System (MPS) [2]. 

 

 
                           

Figure 1:  FSM framework. 

FSM DESCRIPTION 
The FSM design is based loosely upon StateCharts[3]. 

Each FSM is constructed with an entrance state, an exit 
state and a set of intermediate states. Within each state, 
there can be multiple transitions and actions defined. The 
actions can be classified by when they are evaluated; on 
entering, exiting or periodically within the state. 
Furthermore, each action is conditional and if fired can 
result in devices being set, database tables being inserted, 
etc. Figure 2 shows the FSM Builder application that is 
used to construct the FSMs and provides a graphical 
illustration of the FSM structure.  

 

 
Figure 2: FSM Builder application. 
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FSM Functionality  
The execution of a FSM occurs as a single threaded 

process that involves collecting and processing all state 
inputs before executing any of the fired actions or 
transitions. A list of the FSM attributes, including 
allowable inputs and outputs, is given as follows:   

• FSM inputs fall into a wide range of categories 
including device readings, events, database queries, 
ACNET messages, XML-RPC requests, etc. 

• FSM outputs can be classified as device settings, 
event triggers, database inserts, ACNET messages, 
internal variables, etc. 

• An expression parser is the central component of 
the FSM. Collected inputs are first embedded in 
expression strings. The parser then employs a set of 
predefined functions and Java reflection in order to 
evaluate the output of these expressions. Once 
computed, the output type is used to dictate what is 
done with these calculated values. 

• FSM timing is user specified and is driven by the 
return rate of the devices defined in a particular 
state. On entering a state, the FSM blocks until 
fresh readings are received. It then continues on 
with processing the state. 

The FSM execution process is handled by the server 
component of the FSM framework. 

CLIENT-SERVER FRAMEWORK 
The FSM client is a Java application that uses Remote 

Method Invocation (RMI) to communicate with the FSM 
server. The client starts and stops jobs on the remote 
server and also receives state and any requested data from 
the server. Figure 3 illustrates the FSM Display 
application which is used to launch the FSM. As shown, 
the states are traversed and outputs are displayed with 
data returned from the server. Users may also use widgets 
on this application to send data to the server. FSMs 
launched with this application persist only as long as the 
application is open. 
 

 
 

Figure 3: FSM display application. 

Main Server 
The central FSM server exists as a component of the 

DAE infrastructure. The FSM class is imbedded in the 
Java-based Data Acquisition Engine (DAE) infrastructure 

[1] that sits on top of the Fermilab accelerator control 
network (ACNET). The ACNET control system is a 3-tier 
system that uses a connectionless User Datagram Protocol 
(UDP) to connect different machines. The DAE 
infrastructure refers to a client server model where Java 
clients use RMI to communicate with the DAE servers 
that are tied directly to the ACNET control system. The 
DAE servers are on high bandwidth nodes which emit and 
listen to multicast messages, work with raw bytes and 
speak proprietary ACNET. The DAE framework 
introduces the concept of a job which consists of a 6-
tuple; a disposition to send data to, a source to receive 
data from, an item to describe the data, an event that 
specifies the data collection rate, a user to provide 
security and job control. The FSM server can be viewed 
as an item in the DAE framework while the FSM client is 
the disposition that receives data. The process of 
launching a FSM can be regarded as starting a DAE job 
where the server (item) collects the data from the 
accelerator (source), processes it and returns it to the 
client (disposition).  

Alternate Servers 
The framework that has been discussed so far handles 

the execution of transitory FSMs. An extension to this 
framework, which utilizes the Open Access Client (OAC) 
architecture [1] developed at Fermilab, has been 
established to handle persistent FSMs. The OAC 
architecture exists at the ACNET middle tier and serves to 
emulate the front end tier. It provides access to all of the 
ACNET protocol available at the frontend without 
requiring front end programming. This protocol includes 
alarms, device downloads, setting uploads, etc.  The FSM 
OAC links persistent FSM jobs to specific ACNET 
devices. The control values of these devices are used to 
start and stop FSM jobs. Device settings are sent to the 
FSM server and data returned from the server are placed 
in the device readings. FSM job persistence is guaranteed 
for the life of the OAC.  

An alternative server is currently under development 
that utilizes XML-RPC [4] to allow remote access to the 
FSM framework. It is envisioned that not all FSM users 
will be within the firewall. So, the XML-RPC server 
would provide them with limited access to the FSM 
server. These users would only be able to start FSMs in 
safe mode with settings and any other control access to 
the control system disabled. This server has been 
developed and is illustrated in Figure 1. It is currently 
undergoing beta testing and is expected to be released 
shortly.  

WEB TIER 
    A web interface has been developed for the FSM 
infrastructure that allows browsers to act as the client to 
the FSM server. The HTML pages that serve as the 
interface use the Asynchronous JavaScript and XML 
(AJAX) [5] protocol and allow users to view and monitor 
persistent FSMs. Users may also start FSMs, but only in 
safe mode. The HTML pages illustrate the concept of 
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FSM views that is provided by the FSM framework. This 
refers to the client-side processing that is undergone by 
data returned to the FSM client. This processing utilizes 
expression parsing and Java reflection to produce user 
panels and graphs from the data. These panels or graphs 
are then converted to Scalar Vector Graphics (SVG) and 
displayed on the web browser. Figure 4 illustrates some of 
these FSM views. In order to mitigate security concerns, 
any FSM launched from the browser is done in safe mode 
with all settings and control disabled.  
 

 
Figure 4: FSM views. 

FSM EXAMPLES  
The FSM framework is well integrated into the ACNET 

control system at Fermilab and several operational 
implementations have been developed for the collider 
physics program. For example, the electron cooling 
facility utilizes this FSM framework in the 
implementation of its Machine Protection System (MPS) 
recovery scheme. The Electron cooler is based on a 4.3-
MV, 0.1-A, DC electrostatic accelerator (Pelletron) for 
which current losses have to remain low (~10-5) in order 
to operate reliably. The Pelletron itself is subject to high- 
voltage discharges and other system interruptions which 
are monitored and recovered via an FSM. 

The FSM provides the functionality to maintain or 
recover the nominal electron beam current whenever 
drifts or unexpected changes occur (e.g.: operator errors), 
it reduces the gun current as needed to compensate for 
soft fault conditions such as vacuum deterioration and 
slow (i.e. ~milliseconds) HV drops, and it executes a 
consistent set of steps and checks whenever the machine 
needs to recover from a trip. It is particularly important 
when the trip is due to a large HV discharge. In addition 
to the crash recovery process during electron cooling 
operations, separate FSMs operate to perform slow feed-
back (1 Hz) of the Pelletron’s voltage regulation system 
and energy set-point respectively. These processes 
counteract long term drifts of the machine due to 
temperature changes and other slow effects.  

 
Figure 5: FSM display. The plot shows the FSM 
regulating the gun control electrode voltage in order to 
reduce the beam current back to its nominal value. 
 

The Crash recovery FSM has proven to be very useful 
operationally as it significantly reduces manual 
interventions while running beam. It in turn increased the 
electron beam uptime, which is now close to 100% 
(except for occasional hardware failures). The FSM 
infrastructure has become an integral part of the 
Pelletron’s machine protection scheme at various levels 
and helped in streamlining fault analyses. It not only 
captures operational knowledge in the regulation script, 
but also allows for the easy testing and implementation of 
additional scripts to improve operational efficiency. 

                             SUMMARY 
The FSM framework is a crucial component of the 

ACNET control system. Its ability to quickly and robustly 
build, test and launch automated tasks has become a great 
asset. It has operated with a high level of reliability as 
emphasized by its integration into the Pelletron’s MPS. 
The web tier is a recent addition to the FSM framework, 
but its capacity to provide different views of persistent 
FSMs is expected to quite useful. 
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