
A GENERIC FINITE STATE MACHINE FRAMEWORK FOR THE ACNET
CONTROL SYSTEM *

L. Carmichael#, A. Warner, FNAL, Batavia, IL 60543 U.S.A.*

Abstract
A significant level of automation and flexibility has

been added to the ACNET control system through the
development of a Java-based Finite State Machine (FSM)
infrastructure. These FSMs are integrated into ACNET
and allow users to easily build, test and execute scripts
that have full access to ACNET’s functionality. In this
paper, a description will be given of the FSM design and
its ties to the Java-based Data Acquisition Engine (DAE)
framework. Each FSM is part of a client-server model
with FSM display clients using Remote Method
Invocation (RMI) to communicate with DAE servers
heavily coupled to ACNET. A web-based monitoring
system that allows users to utilize browsers to observe
persistent FSMs will also be discussed. Finally, some key
implementations such as the crash recovery FSM
developed for the Electron Cooling machine protection
system will be presented.

INTRODUCTION
Operation of an accelerator control system involves the

creation of many transient and persistent tasks. These
tasks generally access and integrate various components
of the control system, such as accelerator devices,
databases, timing systems, etc. A Finite State Machine
(FSM) framework with the capacity to respond to state
and input data and with hooks into different parts of the
control system provides a mechanism to generate these
tasks in a simple and reusable form.

A Java-based Data Acquisition Engine (DAE)
infrastructure [1] has been used at Fermilab for many
years to provide a Java layer to ACNET data acquisition
and control. This infrastructure has been extended to
provide a generic FSM framework embedded in a client-
server model. FSM client applications start jobs on remote
FSM servers which collect and process all input data and
return state and requested data to the client. This
framework is illustrated in Figure 1. These FSMs provide
users with the ability to quickly build, test and deploy
reusable tasks.

This paper will provide a description of the FSM
structure and functionality, a detailed look at the client-
server framework and an overview of the web tier that
allows for the monitoring of persistent FSMs.
Additionally, several key FSM implementations will be
covered, including a detailed illustration of the crash
recovery FSM that serves as the regulation component of
the Pelletron’s Machine Protection System (MPS) [2].

Figure 1: FSM framework.

FSM DESCRIPTION
The FSM design is based loosely upon StateCharts[3].

Each FSM is constructed with an entrance state, an exit
state and a set of intermediate states. Within each state,
there can be multiple transitions and actions defined. The
actions can be classified by when they are evaluated; on
entering, exiting or periodically within the state.
Furthermore, each action is conditional and if fired can
result in devices being set, database tables being inserted,
etc. Figure 2 shows the FSM Builder application that is
used to construct the FSMs and provides a graphical
illustration of the FSM structure.

Figure 2: FSM Builder application.

* FNAL is operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.
#

MOD001 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

28

FSM Functionality
The execution of a FSM occurs as a single threaded

process that involves collecting and processing all state
inputs before executing any of the fired actions or
transitions. A list of the FSM attributes, including
allowable inputs and outputs, is given as follows:

• FSM inputs fall into a wide range of categories
including device readings, events, database queries,
ACNET messages, XML-RPC requests, etc.

• FSM outputs can be classified as device settings,
event triggers, database inserts, ACNET messages,
internal variables, etc.

• An expression parser is the central component of
the FSM. Collected inputs are first embedded in
expression strings. The parser then employs a set of
predefined functions and Java reflection in order to
evaluate the output of these expressions. Once
computed, the output type is used to dictate what is
done with these calculated values.

• FSM timing is user specified and is driven by the
return rate of the devices defined in a particular
state. On entering a state, the FSM blocks until
fresh readings are received. It then continues on
with processing the state.

The FSM execution process is handled by the server
component of the FSM framework.

CLIENT-SERVER FRAMEWORK
The FSM client is a Java application that uses Remote

Method Invocation (RMI) to communicate with the FSM
server. The client starts and stops jobs on the remote
server and also receives state and any requested data from
the server. Figure 3 illustrates the FSM Display
application which is used to launch the FSM. As shown,
the states are traversed and outputs are displayed with
data returned from the server. Users may also use widgets
on this application to send data to the server. FSMs
launched with this application persist only as long as the
application is open.

Figure 3: FSM display application.

Main Server
The central FSM server exists as a component of the

DAE infrastructure. The FSM class is imbedded in the
Java-based Data Acquisition Engine (DAE) infrastructure

[1] that sits on top of the Fermilab accelerator control
network (ACNET). The ACNET control system is a 3-tier
system that uses a connectionless User Datagram Protocol
(UDP) to connect different machines. The DAE
infrastructure refers to a client server model where Java
clients use RMI to communicate with the DAE servers
that are tied directly to the ACNET control system. The
DAE servers are on high bandwidth nodes which emit and
listen to multicast messages, work with raw bytes and
speak proprietary ACNET. The DAE framework
introduces the concept of a job which consists of a 6-
tuple; a disposition to send data to, a source to receive
data from, an item to describe the data, an event that
specifies the data collection rate, a user to provide
security and job control. The FSM server can be viewed
as an item in the DAE framework while the FSM client is
the disposition that receives data. The process of
launching a FSM can be regarded as starting a DAE job
where the server (item) collects the data from the
accelerator (source), processes it and returns it to the
client (disposition).

Alternate Servers
The framework that has been discussed so far handles

the execution of transitory FSMs. An extension to this
framework, which utilizes the Open Access Client (OAC)
architecture [1] developed at Fermilab, has been
established to handle persistent FSMs. The OAC
architecture exists at the ACNET middle tier and serves to
emulate the front end tier. It provides access to all of the
ACNET protocol available at the frontend without
requiring front end programming. This protocol includes
alarms, device downloads, setting uploads, etc. The FSM
OAC links persistent FSM jobs to specific ACNET
devices. The control values of these devices are used to
start and stop FSM jobs. Device settings are sent to the
FSM server and data returned from the server are placed
in the device readings. FSM job persistence is guaranteed
for the life of the OAC.

An alternative server is currently under development
that utilizes XML-RPC [4] to allow remote access to the
FSM framework. It is envisioned that not all FSM users
will be within the firewall. So, the XML-RPC server
would provide them with limited access to the FSM
server. These users would only be able to start FSMs in
safe mode with settings and any other control access to
the control system disabled. This server has been
developed and is illustrated in Figure 1. It is currently
undergoing beta testing and is expected to be released
shortly.

WEB TIER
 A web interface has been developed for the FSM
infrastructure that allows browsers to act as the client to
the FSM server. The HTML pages that serve as the
interface use the Asynchronous JavaScript and XML
(AJAX) [5] protocol and allow users to view and monitor
persistent FSMs. Users may also start FSMs, but only in
safe mode. The HTML pages illustrate the concept of

Proceedings of ICALEPCS2009, Kobe, Japan MOD001

Control System Evolution

29

FSM views that is provided by the FSM framework. This
refers to the client-side processing that is undergone by
data returned to the FSM client. This processing utilizes
expression parsing and Java reflection to produce user
panels and graphs from the data. These panels or graphs
are then converted to Scalar Vector Graphics (SVG) and
displayed on the web browser. Figure 4 illustrates some of
these FSM views. In order to mitigate security concerns,
any FSM launched from the browser is done in safe mode
with all settings and control disabled.

Figure 4: FSM views.

FSM EXAMPLES
The FSM framework is well integrated into the ACNET

control system at Fermilab and several operational
implementations have been developed for the collider
physics program. For example, the electron cooling
facility utilizes this FSM framework in the
implementation of its Machine Protection System (MPS)
recovery scheme. The Electron cooler is based on a 4.3-
MV, 0.1-A, DC electrostatic accelerator (Pelletron) for
which current losses have to remain low (~10-5) in order
to operate reliably. The Pelletron itself is subject to high-
voltage discharges and other system interruptions which
are monitored and recovered via an FSM.

The FSM provides the functionality to maintain or
recover the nominal electron beam current whenever
drifts or unexpected changes occur (e.g.: operator errors),
it reduces the gun current as needed to compensate for
soft fault conditions such as vacuum deterioration and
slow (i.e. ~milliseconds) HV drops, and it executes a
consistent set of steps and checks whenever the machine
needs to recover from a trip. It is particularly important
when the trip is due to a large HV discharge. In addition
to the crash recovery process during electron cooling
operations, separate FSMs operate to perform slow feed-
back (1 Hz) of the Pelletron’s voltage regulation system
and energy set-point respectively. These processes
counteract long term drifts of the machine due to
temperature changes and other slow effects.

Figure 5: FSM display. The plot shows the FSM
regulating the gun control electrode voltage in order to
reduce the beam current back to its nominal value.

The Crash recovery FSM has proven to be very useful
operationally as it significantly reduces manual
interventions while running beam. It in turn increased the
electron beam uptime, which is now close to 100%
(except for occasional hardware failures). The FSM
infrastructure has become an integral part of the
Pelletron’s machine protection scheme at various levels
and helped in streamlining fault analyses. It not only
captures operational knowledge in the regulation script,
but also allows for the easy testing and implementation of
additional scripts to improve operational efficiency.

 SUMMARY
The FSM framework is a crucial component of the

ACNET control system. Its ability to quickly and robustly
build, test and launch automated tasks has become a great
asset. It has operated with a high level of reliability as
emphasized by its integration into the Pelletron’s MPS.
The web tier is a recent addition to the FSM framework,
but its capacity to provide different views of persistent
FSMs is expected to quite useful.

REFERENCES
[1] Guide to Data Acquisition Engine, K. Cahill, Beams

Document 666-v1.
[2] Arden Warner, Linden Carmichael, et al, The Design

and Implementation of the Machine Protection
system for the Fermilab Electron Cooling Facility.
DIPAC 09.

[3] Harel, David, StateCharts: A visual Formalism for
Complex Systems. Science of Computer
Programming (1987).

[4] Simon St. Laurent, “Programming Web sevices with
XML-RPC (2001).

[5] Jesse James, AJAX: A new approach to web
applications.

MOD001 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

30

