Proceedings of ICALEPCS2009, Kobe, Japan

FRA006

EVALUATING THE OMG DATA DISTRIBUTION SERVICE (DDS) FOR
ACCELERATOR CONTROL SYSTEMS®

N. WangT, S. Shasharina, Tech-X Corporation, Boulder, CO 80303, U.S.A.

Abstract

As accelerators become bigger, traditional ways of
building the control systems based on a single framework
no longer scale. A Service-Oriented Architecture (SOA)
adopting both a Remote-Procedure-Call (RPC) and a
Message-Oriented Middleware (MOM) standard service
buses promotes multiple levels of loose coupling to
increase the robustness and adaptability of overall control
applications without sacrificing performance. The
emerging OMG DDS specification defines a data-centric
communication standard with rich supports for quality-of-
service (QoS). It is especially suited as the SOA's MOM
service bus for control systems. DDS helps extend the
modules built with proven control development frame-
works such as Experimental Physics and Industrial
Control System (EPICS,) into standard services in a SOA
environment and facilitate flexible data exchanges
between services. In this paper, we review various
features in the OMG DDS standards and their
applications in high-level control applications. We also
illustrate how, collaborating with Web Services, DDS fits
into a SOA for accelerator control systems. Finally, we
present how we are evaluating performance
benchmarking results of several DDS implementations,
including an EPICS-DDS, which is an open source
implementation of OMG DDS.

BACKGROUND AND INTRODUCTION

Accelerator control systems (ACS) coordinate the
interactions among control hardware, data acquisition
instruments, logging and data storage devices, and
operator's interface. High-level accelerator control
applications encompass activities such as operator control
panels, tune measurement, orbit control, parameter
save/restore, feedback, optic optimization, and parameter
scanning, to allow physicists and operators to control and
reason accelerator behaviours in physically meaningful
abstractions. There exist many tools and frameworks to
help bring modern software engineering practices to the
development and integration of lower-level hard real-time
controls and the high-level soft real-time applications
with great success.

Emerging Trends and Challenges

Control systems are often built on top of a set of
existing tools and platforms that suit the needs of their
target. For examples, the EPICS [1] toolkit provides a
standard for low-level controller architecture and a set of
interoperable tools and engineering applications to assist
control system developments. Depending on the scale of

"Work supported by US Department of Energy under contract DE-FG02-
08ER85043, and Tech-X Corporation.
fnanbor@txcorp.com

Software Technology Evolution

the target accelerator, high-level applications are often
developed as a monolithic Graphical User Interface
(GUI), a simple script, or a library routine. As in the case
of generalized ACS control environments, many tools and
frameworks such as Unified Accelerator Language (UAL)
and Matlab Middle Layer Toolkit (MMLT), are available
to assist the integration and interaction among high-level
applications and device controllers (built, e.g., using
EPICS.)

All the different development environments and tools
do not generally interoperate with one another. This is not
a major issue for small- or medium-sized accelerators.
However, such ad hoc approach no longer scales for
modern large-scale accelerator facility such as the new
NSLS-II, Project X, and the International Linear Collider
(ILC). This challenge is reflected in both the ILC
Reference Design Report and the NSLS II Preliminary
Design Report which both call for a separate “service
tier/middle layer” to provide device and functional
abstractions as units of integrations.

SOA: SERVICE-ORIENTED
ARCHITECTURE

SOA [2,3] has gained wide-spread acceptance in the
business/enterprise software world as it has shown to
facilitate the integration and composition of disparate
software services across enterprises and businesses
boundaries. SOA is neither a single technology nor as a
silver bullet to address the challenges facing large-scale
IT application development. Rather, SOA represents
technology-independent, high-level concepts that provide
architectural blueprints for these systems. These
architectural blueprints focus on the partitioning
enterprise application into components that are created
and exposed as services, and the composition of services
to realize an enterprise mission. Applying SOA principles
in ACS is a promising approach in isolating and managing
the complexity. In fact, many existing accelerator control
systems have already adopted many SOA guidelines and
principles. To address the needs and challenges of next-
generation, large-scale accelerator control systems, we are
developing a SOA environment for next-generation large-
scale accelerator control systems to manage the
complexity and contain the cost of developing future
accelerator control systems and upgrading existing ones.

ENABLING SOA FOR HIGH-LEVEL
APPLICATIONS IN CONTROL SYSTEMS

Both the SOAP-based and RESTful Web Services have
long been viewed as the middleware for middleware, i.c.,
they are used as an interoperability mechanism among
diverse middleware technologies such as CORBA and

937

FRA006

Java RMI, that are used for building smaller scaled
distributed applications. Web Services have long been the
de facto standard service bus for enterprise and e-
commerce applications due to its simplicity. There are
alternative efforts to adopt other more efficient and
versatile middleware standards such as CORBA, in a
SOA to address the performance and lack of features
issues. However, there are still limitations with these
standards. Specifically, the point-to-point, request-reply,
RPC-styled communication model may impose scalability
issues as the size and complexity of future accelerator
control systems grow.

Message-Oriented Middleware

The emerging DDS [4] is a new class of MOM standard
specified by the Object Management Group (OMG) that
complement RPC-styled client-server middleware while
address their many limitations. DDS is a natural extension
to many existing accelerator control frameworks. In
particular many correlated EPICS’ Process Variables
(PV's) can be made available as DDS topics. Because
DDS inherently support many quality-of-service (QoS)
policies such as message priority and deadline, that are
necessary for mission-critical applications, DDS is a
natural selection to act as the alternative service-bus in a
SOA for control systems.

Figure 1 illustrates an SOA for high-level accelerator
environment where applications exchange data using
DDS as the common standard service bus. As shown in
the figure, client applications can readily act as gateways
to another enterprise service bus such as Web Services.

State Data

Web/WAP Services
Control Panels Measured
Orbit
Z:’_\Ink J.hm Orbit
fent fent Differences

Optic
Deviations

Configuration

DDS DCPS
Parameters

- Physics
Applications

Conversion,
Name
Mapping

Gradient
Err & Corr

Virtual
Accelerator

Machine
Beam Resp

Matrix Diff

EPICS Channel Access Protocol

I 1T 1 1

gl

10C 10C 10C 10C | l0C
(Timing) (BPM) (PS) (BPM) (PS)
Figure 1: SOA for High-Level Application over DDS.
Overview of DDS

At the core of DDS is the Data-Centric Publish-
Subscribe (DCPS) model. As shown in Figure 2, the
specification defines standard interfaces that enable
applications running on heterogeneous platforms to
write/read data to/from a global data space in a distributed
system. Applications that want to share information with
others can use this global data space to declare their intent
to publish data that is categorized into one or more topics
of interest to participants.

Software Technology Evolution

938

Proceedings of ICALEPCS2009, Kobe, Japan

Topic A
(Name/QoS/Type)

Topic B
(Name/QoS/Type)

Application

‘Global’ Data Store

[oms]

Application

Application

Figure 2: Data-centric publish/subscribe interaction model
in DDS.

Similarly, applications that want to access topics of
interest can also declare their intent to become subscribers
with in the same data space. The underlying DCPS
mechanism propagates data instances written by
publishers into the global data space, where it is
disseminated to subscribers interested in the information.
The DCPS model decouples the declaration of
information access intent from the information access
itself and thereby enables the DDS middleware to support
and optimize QoS-enabled communication under the
hood without close intervention from participating
applications.

EPICS-DDS

Other than evaluating the use of commercial and open-
source DDS implementations for ACS, we will also
evaluate the use of EPICS-DDS [6] for ACS. EPICS-DDS
is an open source implementation of the OMG's DDS
based on the Channel Access (CA) protocol of EPICS. It
exposes EPICS variables using DDS APIs to support the
data-centric communication model in ACS. Under this
approach, the higher-level applications and server uses
the DDS standard interfaces to publish and subscribe data
topics. These DDS interfaces then propagate the data
using the common EPICS CA protocol to update the
corresponding PV’s residing at a EPICS server. In the
context of DDS specifications, the different middle layers
servers are considered as the corresponding DDS
publishers designed to provide the states of the associated
data structures shared by high-level client-subscribers.

EVALUATING DDS THROUGH
PERFORMANCE TESTING

Accessing the performance of the messaging
middleware and the overall systems and applications
provide critical information to help making key design
decision such as:

¢ Selection of DDS implementations: Different DDS

implementations make different tradeoffs and adopt
different implementation strategies to realize the
movement of data from publishers to subscribers
according to the QoS policies specified by all the
entities involved. As a result, certain
implementations perform better under certain
operation environment while others scale better. It is
important to understand how they behave under the
environments applications are intended to run.

Proceedings of ICALEPCS2009, Kobe, Japan

e Assisting hardware design: For large-scale
systems, it is possible that the amount of messages
exchanged across the wire may just be too much for
the middleware to maintain the necessary QoS even
though there is enough bandwidth to transmit all the
data. It will be helpful to foresee such limitations and
revise the design accordingly, e.g., separate traffic by
adding a new Ethernet.

e Assisting in DDS configuration: DDS supports a
rich set of QoS policies. Configuring a system using
different set of policies can affect the overall
performance in different ways. For example, setting
priority on one data stream can affect the overall
behaviours of other data streams. Being able to
perform tests to observe system behaviours at similar
scales can provide essential guidance on design
strategies.

Benchmarking Infrastructure and Target
Scenarios

Existing DDS performance tests, however, are often
one-off solutions that measure system behaviours in a
simple environment. To address the limitation, we are
building a performance measurement tool suite by
combining two different approaches. First, we will
develop the generic benchmarking application similar to
the open-source Touchstone performance tool. Similar to
that of Touchstone’s, the benchmarking application can
be configured to instantiate test components such as
transceiver and transponder for latency test, via special
messages of a set of control topics. Users can design and
instantiate tests of different scales and with different
combinations of QoS policies easily. Such approach
allows users to create scenario-based performance
evaluations easily.

Another challenge that our test suite will address is the
difficulty in deploying large scale test bed over
distributed environments. We plan to leverage existing
deployment and configuration framework to remotely
deploy benchmarking test applications, be it written in C,
C++, or Java.

We plan to perform application scenarios relevant to
ACS. For example, for high-level application integration,
we will implement an optimization framework that
couples machine, online model such as Tracey, via a
common DDS Twiss parameters topic. We will configure
the test to measure the application and middleware
performance in a similar scale and QoS policies.
Moreover, connecting ACS data to GUI control panel and
other Web Services/WAP servers to present data in a
timely manner has great potential. We also plan to
demonstrate system behaviours under such scenarios.

CONCLUDING REMARKS

This paper describes how a dual service-bus SOA
provides an ideal development environment that promotes
medullisation of high-level application components and

Software Technology Evolution

FRA006

facilitates dynamic composition of high-level ACS
applications. In the context of the high-level application
environment, it means flexibility in selecting and
connecting the most appropriate modelling algorithms
and programs. To support such environment, we are
bringing the next generation data-centric publish-
subscribe middleware called DDS by investigating
various usage scenarios and programming patterns of
DDS in ACS. Furthermore, we are developing a DDS
performance test suite and performing benchmarking tests
to evaluate various open source and commercial DDS
implementations.

Other than readily available DDS implementations, we
are also evaluating and contributing to the development of
a new extension to EPICS that supports DDS interfaces
on top of the CA protocol. The integration of these two
technologies provides many benefits. First, DDS brings
an industrial standard middleware to the accelerator
online environment, allowing the decoupling of a variety
of high-level applications and toolkits from the
underlying low-level control system frameworks such as
EPICS. Conversely, the DDS topic-oriented approach
elevates the EPICS Channel Access protocol to the high-
level applications. Third, the DDS specification
introduces some guidance for extending the EPICS
infrastructure with the relevant set of quality of service.
Finally, the DDS technology extends the EPICS run-time
environment with the relational database model creating a
platform for relational queries and integration of full-scale
Data Stream Management Systems (DSMS) for data
stream processing and archiving.

To assist ACS developers to take full advantage of
DDS, we are developing tools to help them to understand
how various design decisions affect overall system
performance. Furthermore, we are designing tools to help
facilitate the design and configuration of DDS.

REFERENCES

[1] L. Dalesio et al., “The Experimental Physics and
Industrial Control System Architecture,”
ICALEPCS’93, Berlin, Germany, October 1993,
http://www.aps.anl.gov/epics/

[2] Dirk Krafzig and Karl Banke and Dirk Slama.
Enterprise SOA — Service-Oriented Architecture Best
Practices. Prentice Hall, 2005.

[3] Eric Newcomer and Greg Lomow. Understanding
SOA with Web Services. Addison Wesley, New
Jersey, 2005.

[4] OMG, “Data Distribution Service for Real-time
Systems, Version 1.2,” formal/07-01-01,
http://www.omg.org/cgi-bin/doc?formal/07-01-01

[5] M. Kraimer et al, “EPICS Application Developer’s
Guide,” January 2009.

[6] M. Nikolay et al, “Prototype of a DDS-based High-
Level Accelerator Application Environment,”
ICALPCS09, Kobe, Japan, Oct 2009.

939

