Proceedings of ICALEPCS2009, Kobe, Japan

A REST SERVICE FOR IRMIS3

G. Carcassi, BNL, Upton, NY, U.S.A.

Abstract

We will describe the architecture of IRMIS3, the role of
the data service and how it allows easier upgrade paths by
concentrating all the logic in one place. We will describe
how the service is accessed, both for read and writes, and
some details about its current implementation.

INTRODUCTION TO IRMIS

IRMIS [1] is a collaborative effort between several
EPICS sites to build a common Relational DataBase
schema and a set of tools to keep of the difference parts of
an accelerator, including components and their
relationships, the process variables of the control systems
and the elements of a simulation lattice.

IRMIS3 [2] is an effort started at BNL to address some
of the shortcomings of the previous version. In particular
this paper will show how the choice of a Service Oriented
Architecture [3] address concerns about RDB schema
evolution, protecting the consistency of the data and
interoperability with multiple languages and technologies.

IRMIS3 ARCHITECTURE

Prior to IRMIS3, all the tools would connect directly to
the database. This poses a problem in allowing the
schema to evolve: if a change is implemented, all the
clients have to be modified and deployed at the same time
that the new schema is deployed. Even if a common
library is used for all clients, one has to know where all
such clients have been installed, including scripts that
have been written and that are not routinely used. Failure
of a synchronized update can be minor (some clients do
not work) to major (client saving with the old format,
corrupting the database). This is even more problematic
when it is the business rules that have changed: one
would have to be sure that all the clients are behaving
correctly.

The consequence is that the upgrade is a stop-the-world
process, which is rarely possible in a production
environment. The further consequence is that changes pile
up for the few opportunities available, increasing the
actual risk of failure of the upgrade process.

Another problem of connecting directly to the database
is that the business logic needs to be coded at least once
for each platform or language supported. This creates
additional support costs, and combines to the general
problem of evolving the software.

In the IRMIS3 architecture, all the accesses to the
database go through the data service first. The service is a
REST style web service [4], is responsible for executing
all the business logic and data safety. The service defines
its own protocol between itself and the clients through an
XML schema and a set of URLs that the clients can
access.

Web Technology

FRA002
Webserver_ ____ ¢ = [TTTTTT7— Browser_ _
------------ ! Firefox, IE,....
| (Glassfish) ! “ : {Fi -}
: : 1 Java 1
! 4«——"” Hll applets :
IRMIS DB 1 Data service N |
(MysQL) ] ~— 1 !
! i SN AJAX !
| P S, .' I : components :
X / [ A 1
e .l;p otocy) - s

Scripts and CLI
(perl, Python, ...)

Figure 1: IRMIS3 architecture.

In this case, the service is the only component that
needs to be aware of the schema change. If the change is
such that the external protocol can be maintained, which
is typically the case of performance driver modifications,
then all the clients will never be impacted by the change.
If the change is such that the protocol needs to be
substantially modified, once can operate for an
intermediate period with the service speaking both the old
and the new protocol with the same database backend.
This allows gradually moving the clients to the new
protocol, while keeping the old infrastructure in place.
When and if the previous protocol is no longer needed, it
can be dropped. This practice is common place on most
commercial websites, and allows deploying a constant
stream of small improvement while retaining control and
uptime of the system.

The other advantage is that the clients need only know
about the XML protocol, and not the business logic. The
client can be “dumb”, so to speak, because its mistakes
will be caught and rejected by the service.

We want to stress out that the choice of REST, instead
of SOAP or XML-RPC, has less to do with performance
and ease of use than the simple fact that the service just
provides access to data. SOAP and XML-RPC are the
appropriate choice for remote procedure calls, so they
would not be appropriate in this context regardless of any
other consideration.

RETRIEVING DATA

Data can be retrieved with any standard HTTP client.
The service provides a set of URLs one can use, each
address representing a different query. Queries can be
parameterized through a set of HTTP parameters. The
service itself provides documentation of which queries
and parameters are available.

The server will return an XML file that represents the
data requested. The protocol is designed to minimize
possible roundtrips, so it returns as much information as
possible, typically de-normalizing the data returned. This

925



FRA002

also allows using standard XML tools, such as XPath or
XSLT, to search and analyze.

Standard REST conventions are only followed when
appropriate. Most notably, each data elements is
identified by and id which correspond to the database
primary key instead of a full URL. Many data elements
do not even have a specific URL associated with them.
For example, there is no URL for each manufacturer, only
a URL for the (possibly filtered) full list.

WRITING DATA

For writing data, we depart slightly from what is
typically done in a REST service since you cannot simply
use PUT/POST/DELETE on IRMIS resource URLs to
make modifications. It was simply impractical to perform
each operation individually, as a typical session of editing
might change hundreds if not thousand of data elements.

The biggest problem, though, is that we want to keep
those changes as a single operation, so that the client has
a much simpler time managing updates as it does not have
to clean up if one intermediate operation fails.

The way that data is modified in IRMIS3 is to prepare
an XML that represents the transaction to be executed on
the server. Each transaction is broken down into xml
elements that represent command, such as create a
component, connect a cable or delete a manufacturer. All
these elements can be mixed and matched in any order as
they are independent of each other. They will be executed
in the same database transaction on the server, as to
guarantee atomic execution.

This implicitly allows for disconnected operation: a
handheld client can collect a list of changes, and then
send the XML the first time it connects online. This can
be done without any extra work, simply by saving the
transaction to a temporary file instead of sending it
directly over the network.

We also strive to keep the transaction idempotent: if the
same transaction is sent twice, it will either fail, or it will
have the same result. This greatly simplifies usage if
network problems are encountered: if the previous request
dropped out, one can safely retransmit.

The only caveat is that there is no read lock: one cannot
lock the data on one read to make sure that when he will
write no modifications happened in between. The cost of
such feature is deemed too large for the benefits that it
will introduce. The server will, in any case, save all the
XML transactions it received, so that the rare collision
can be at least investigated properly.

IMPLEMENTATION

The service is implemented in Java [5], under Java SE
6 and Java EE 5. It is deployed in Glassfish 2.1 [6], the
open source application server sponsored by Sun.

The server itself is a Servlet which accepts all requests
and dispatches them to the appropriate class for handling.
Each query and each transaction element is implemented
as a separate class.

Web Technology
926

Proceedings of ICALEPCS2009, Kobe, Japan

Business
logic

Figure 2: Service implementation.

The database access is provided through the Java
Persistance API [7], which is a standard spec for objects
brokers (such as Hibernate or EclipseLink). We currently
use TopLink essentials as JPA provider simply because
it’s the one included in Glassfish.

We use JPA simply as a way to write queries more
easily taking advantage of JPQL, an SQL dialect that
allows to query directly on the objects and chain through
relationships through the °.” notation. It also provides an
abstraction on top of the database, so that we could switch
from one database vendor to another with little effort.

We actually started out using JDBC with direct SQL
manipulation, but the cost of maintaining the code was
starting to get out of control: to de-normalize the data we
have to go through many relationships and many joins,
with called for queries that could be as long as 600
characters. With that length, SQL starts to become very
difficult to read and understand. Use of JPQL cut the
length by more than half, and made them much more
readable. The cost associate to moving to JPA was about
6%, so it was not deemed high compared to the gains.

JPA also greatly simplifies writing the non-trivial
business rules that IRMIS requires. And it also makes it
easier to understand what needs to be changed after a
schema change: the classes are regenerated from the
schema, and we get a compile time error whenever
something needs to be fixed. In JDBC, instead, all
references would be through Strings, so we would have to
use search and replace techniques which tend to be more
brittle. We make sure, though, that no logic is attached to
JPA objects, so that we can throw them out and
regenerate them. It also makes the code less relying on
JPA in case we changed our mind in the future.

To parse the incoming transaction, we use JAXB [8]
which is a standard library to convert XML into Java
objects. This simplifies the coding of the business logic in
the same way that using JPA objects does. JAXB objects
are automatically generated from the XML schema,
therefore they also do not contain any business logic or
rules.

To write the data out we do not use JAXB (or DOM):
this would force us to create the whole document before
we started to write the first byte, which would increase
the delay suffered by the client. We use SAX to stream
the data as it becomes available.



Proceedings of ICALEPCS2009, Kobe, Japan

PERFORMANCE

We typically do our performance evaluation by using
an old copy of the APS dataset which was converted to
use IRMIS3. On my laptop, a Dell Precision M4300 -
Intel Core Duo T7500 - 2.20 GHz, the longest query that
streams all of the 31338 components and their 63911
relationships takes about 5 seconds. Most of the other
queries take less than 100 ms.

Though 5 seconds is not trivial, is actually a good
number as it is still acceptable at start-up of a GUI or of a
script. What one gains is that no further roundtrip is
needed to go through the entire dataset, so searching,
filtering or providing visual cues is trivial. The other
queries are well below 500 ms, which is the typical
threshold of patience for a GUI user.

The main reason we are able to stream that much
database rows and relationships is that the number of
queries are a constant in respect to the amount of data
retrieved. For example, in the case of components and
their relationship, we have three queries: one for the
component themselves, one for the parent relationships
and on for the child relationships. The queries are
returned in the same component order, so that we can read
the first component from the first queries, its parents from
the second and its children from the third. The entire
output is created by scrolling through the three queries at
the same time.

It also important to note that only half the time is spent
by the database query. This means, for example, that after
a pause of 2.5 seconds XML starts coming in, and the
client can start parsing and interpreting the data. So the
total latency seen by the client is only slightly more than 5
seconds since a good part of the parsing happens while
the data arrives. This is why we used SAX (instead of
JAXB or DOM) to generate the XML.

No further optimization was done as these expedients
gave us a good enough performance. There are other
areas that could be explored, such as hardware/os tuning,
streaming XML directly without using SAX, profiling to
look for unexpected bottlenecks and caching the produced
XML for the next request. These can be used if in the
future we need to further improve performance.

CONCLUSION

Between October 2008 and October 2009 we had 12
releases of IRMIS, 6 of which included db schema

Web Technology

FRA002

updates. We always had a production instance running,
which is gathering data as it becomes available. This
shows that it is possible to evolve the system with little
impact on the client.

The data service layer also constitutes a good boundary
on which to integrate. In particular, NSCL at Michigan
State University contributed a php API for the data
service, which adds to the Java API already provided.
They were also able to build a simple php inventory
management system, which included a handheld device
working in disconnected mode: it can be used to scan
barcodes; it prepares the XML transaction and then sends
it when it is back online.

We encourage the reader to consider using a service
layer in front of other databases or systems they may have
already deployed as a way to decouple the components
and allow for better separation of the business rules and
simplify upgrades.

AKNOWLEDGEMENTS

This work would not have been possible without the
help of Peter Beard, Eric Berryman, Bob Dalesio, Don
Dohan, Debby Quock, and Doug Sheffer.

REFERENCES

[1] IRMIS;
http://www.aps.anl.gov/epics/irmis/index.php.

[2] IRMIS3;
ttph/irmis.sourceforge.net.

[3] An introduction to Service Oriented Architecture
http://en.wikipedia.org/wiki/Service-
oriented_architecture.

[4] An introduction to Representational State Transfer
(REST)
http://en.wikipedia.org/wiki/Representational State
Transfer.

[5] http://java.sun.com.

[6] https://glassfish.dev.java.net/.

[7]1 JPA;
http://java.sun.com/javaee/overview/faq/persistence.j
sp.

[8] https://jaxb.dev.java.net/.

927



