A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sobczak, M.

Paper Title Page
TUP019 Diagnostic and Monitoring CERN Accelerator Controls Infrastructure : The DIAMON Project - First Deployment in Operation 128
 
  • M. Buttner, P. Charrue, J. Lauener, M. Sobczak
    CERN, Geneva
 
  The CERN accelerator controls infrastructure spans over several machines and several thousands of devices are used to collect and transmit piece of control data. Each of these remote devices might fail and therefore prevent correct operation. A complete diagnostic and monitoring infrastructure has been developed in order to provide Operation crews with complete and easy to use graphical interface presenting the state of the controls system. Simple agents running in each surveyed item periodically report monitoring information to a central server. Graphical JAVA clients in the operation centers subscribe to this monitoring data and display a view of the current state of the machines. Mouse actions from these clients allows for diagnostic commands to be sent to the agent to get additional details or to repair a faulty situation. This presentation will describe the overall architecture of DIAMON, present the different agents running in the controls system and a few views of the graphical clients. The outcome of the first months in operation of the DIAMON tools will also be presented. Finally, the future plans will be exposed.  
poster icon Poster  
TUP020 Role Based Access Control in the LHC : The RBAC Project - First Deployment in LHC Operation 1
 
  • P. Charrue, W. Sliwinski, M. Sobczak, I. Yastrebov
    CERN, Geneva
  • S. R. Gysin, E. S.M. McCrory, A. D. Petrov
    Fermilab, Batavia
 
  Operating the LHC, its high energy stored in the magnets and the multitude of devices settings demand a strict control on who can do what. A Role Based Access infrastructure has been designed and deployed for the LHC. A simple identification based on username/password is translated into an operational role by the RBAC server and this role is then transmitted and checked on the device level to grant or deny access. The RBAC infrastructure has been commissioned in the summer 2008 and used in operation for the first time for the first LHC beams. This presentation will describe the RBAC architecture, its technical choices and its operational deployment. The outcome of the first deployment in LHC operation will be presented, together with the future plans.  
THP085 An Integration Testing Facility for the CERN Accelerator Controls System 838
 
  • N. Stapley, M. Arruat, J. C. Bau, S. Deghaye, C. G.A. Dehavay, W. Sliwinski, M. Sobczak
    CERN, Geneva
 
  A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although are tested individually, are often not able to be tested together on a system capable of representing the complete control system environments including hardware. Furthermore, the control system is being adapted and applied to CERN's whole accelerator complex and particularly the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and to improve defect prevention, the Controls group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions.  
THA005 CERN Proton Synchrotron Complex High-Level Controls Renovation 638
 
  • S. Deghaye, M. Arruat, D. Garcia Quintas, M. Gourber-Pace, G. Kruk, O. Kulikova, V. V. Lezhebokov, S. Pasinelli, M. Peryt, C. Roderick, E. Roux, M. Sobczak, R. R. Steerenberg, J. P. Wozniak, Z. Zaharieva
    CERN, Geneva
 
  After a detailed study of the PS complex requirements by experts of the CERN controls & operation groups, a proposal to develop a new system, called Injectors Control Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the controls systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfill operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After a minute description of the architecture put in place and the components used, this paper will describe the planning approach taken combining iterative development phases with deployment in operation for validation sessions.