A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Satoh, M.

Paper Title Page
WEP036 Development of Software for Event System in KEK Linac 1
 
  • S. Kusano, T. Kudou
    MELCO SC, Tsukuba
  • K. Furukawa, M. Satoh
    KEK, Ibaraki
 
  The KEK Linac injects the electron and positron beams into the KEKB-LER, KEKB-HER, PF and PF-AR rings with four different characteristics. In order to improve the beam operation efficiency, we have planned the simultaneous top-up operation for the PF and KEKB. The fast beam switching mechanisms are being developed and installed. For those mechanisms, the linac parameters of timing and low-level rf phase should be controlled in the pulse by pulse of 50 Hz. In this paper, we will present the event timing system to the KEK Linac control system in detail.  
WEP047 Upgrade of Readout System for Beam Position Monitors in the KEKB Beam Transport Line 495
 
  • T. Aoyama, T. Nakamura, K. Yoshii
    MELCO SC, Tsukuba
  • K. Furukawa, N. Iida, M. Satoh
    KEK, Ibaraki
 
  At the KEKB accelerator, electrons and positrons are injected from the LINAC to the storage ring through the beam transport (BT) line. LINAC had continuously injected each beam alternately every about a few minutes. In our linacs system, it is very important to switch acceleration devicesfrom electron mode to position and vica versa to keep high storage currents. To attain this, we have developed new readout system for the beam position monitors (BPMs) at the BT line, by which the fast monitoring is possible. For the old BPM system, it had been taken a few seconds to switch the beam modes and about one second to measure the beam positions. With the new system, measuring interval was achieved to be 20 msec, including switching time, and we demonstrated that new system contributed to stable beam operation. In this manuscript, we will report on a detail of the fast readout for the BT BPM system including its performance.  
WEP086 EPICS IOC of WindowsXP-based Oscilloscope for Fast BPM Data Acquisition System 567
 
  • M. Satoh, K. Furukawa, T. Suwada
    KEK, Ibaraki
  • T. Kudou, S. Kusano
    MELCO SC, Tsukuba
 
  In the KEK Linac, about 100 monitors (BPMs) are used for the beam orbit measurement. The previous data acquisition (DAQ) system consists of the VME and the digital oscilloscope. The maximum DAQ rate is about 1 Hz which is limited by an oscilloscope performance. We have developed the new DAQ system since we have an ongoing linac upgrade project aiming a fast beam-mode switch, in which the fast beam position measurement is strongly required up to 50 Hz. The new BPM DAQ system is a WindowsXP-based fast digital oscilloscope. The DAQ software has been initially developed by C++ and TekVISA. It acquires the waveform signal from the BPM electrodes and calculates the beam positions. It is very useful to run the DAQ software as an EPICS IOC since the most part of Linac parameters are accessible via EPICS protocol and they are archived by EPICS archiver. Recently, we developed the BPM DAQ software based on EPICS which can make the oscilloscope work as an EPICS IOC. The results of performance test show that the new DAQ software can work well up to 50 Hz. In this paper, we will describe the fast BPM DAQ software based on EPICS and the results of its performance evaluation in detail.  
poster icon Poster  
THP052 New Event-based Control System for Simultaneous Top-up Operation at KEKB and PF 765
 
  • K. Furukawa, T. T. Nakamura, M. Satoh, T. Suwada
    KEK, Ibaraki
  • A. Kazakov
    Sokendai, Ibaraki
  • T. Kudou, S. Kusano, T. Nakamura
    MELCO SC, Tsukuba
 
  The 8-GeV linac at KEK provides electrons and positrons to three ring accelerators of KEKB-HER, KEKB-LER and Photon Factory. Simultaneous top-up injections to those rings are carried for the ultimate experimental results at the both KEKB and PF facilities. An event-based fast control system was newly constructed overlapping the existent EPICS control system. The new system controls the distant equipment globally utilizing event modules from MRF and several other techniques. The event system enables fast controls from pico-second to milli-second range, and the conventional EPICS system covers slower controls. More than 100 parameters are driven globally by the event system every 20ms pulse in order to generate beams with three-times different energies and 100-times different charges. And more than 500 parameters are observed synchronously to ensure the beam operation. The system enables the future accelerator complex such as SuperKEKB as well. This paper describes the detailed design of the hardware and software structures, beam operation experiences, and possible extensions towards the future.  
poster icon Poster