A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Natampalli, P.

Paper Title Page
THC004 Orbit Display's Use of the Physics Application Framework for LCLS 673
 
  • S. Zelazny, S. Chevtsov, P. Chu, D. Fairley, P. Krejcik, P. Natampalli, D. Rogind, G. R. White
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy under contract number DE-AC02-76SF00515.

At SLAC (SLAC National Accelerator Laboratory) the CD (Controls Department) is developing a physics application framework based on the Java(tm) programming language developed by Sun Microsystems. This paper will discuss the first application developed using this approach: a new Orbit Display. The software is being developed by several individuals in reusable Java packages. It relies on EPICS * (Experimental Physics and Industrial Control System) toolkit for data collection and XAL ** (A Java based Hierarchy for Application Programming) for model parameters. The Orbit Display tracks and displays electron paths through the LCLS (Linac Coherent Light Source) in both a graphical, beam line plot, and tabular format. It contains many features that may be unique to SLAC and is meant to be used both in the control room and by individuals in their offices or at home. Unique features include BSA (Beam Synchronous Acquisition), Orbit Fitting, and Buffered Acquisition.

* http://www.aps.anl.gov/epics
** http://neutrons.ornl.gov/APGroup/appProg/xal/xal.htm

 
THB001 Beam-based Feedback for the Linac Coherent Light Source 644
 
  • D. Fairley, S. Allison, S. Chevtsov, P. Chu, F.-J. Decker, P. Emma, J. C. Frisch, T. M. Himel, K. H. Kim, P. Krejcik, T. E. Lahey, H. Loos, P. Natampalli, S. Peng, D. Rogind, H. Shoaee, T. Straumann, G. R. White, E. Williams, J. Wu, S. Zelazny
    SLAC, Menlo Park, California
 
  Funding: Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC.

Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6x6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.