
Automation From Pictures: Producing Real Time Code from
a State Transition Diagram*

Andrew J. Kozubal
Mail Stop H820

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract
The state transition diagram (STD) model has been

helpful in the design of real time software, especially with
the emergence of graphical computer aided software
engineering (CASE) tools. Nevertheless, the translation of
the STD to real time code has in the past been primarily a
manual task. At Los Alamos we have automated this
process. The designer constructs the STD using a CASE tool
(Cadre Tuamwork) using a special notation for events and
actions. A translator converts the STD into an intermediate
state notation language (SNL), and this SNL is compiled
directly into C code (a state program). Execution of the state
program is driven by external events, allowing multiple state
programs to effectively share the resources of the host
processor. Since the design and the code are tightly
integrated through the CASE tool, the design and code
never diverge, and we avoid design obsolescence.
Furthermore, the CASE tool automates the production of
formal technical documents from the graphic description
encapsulated by the CASE tool.

I. INTRODUCTION
Structured analysis and design methods often make use

of the state transition diagram (STD) to model real time
systems.fl] A CASE tool, such as Cadre Teamwork/RT{2],
can partially automate the STD methodology, but the
programmer is left with the task of converting the STD into
run time code. The programmer takes into account
numerous factors, such as task priority, task synchronization,
and pending for multiple events, to produce efficient code,
and often the resulting code bears little resemblance to the
STD. Using a two-step procedure, we have achieved
significant automation of this process.

The translation of the STD into code is based on work
done previously to develop a language that is based on the
STD paradigm. The state notation language (SNL) [3] was
developed to simplify programming of time-constrained
sequential operations that are driven by events. During
extensive experience with the SNL on the Ground Test
Accelerator and the Advanced FEL at Los Alamos,[4,5] the
SNL evolved into a powerful tool for implementing real
time, automatic control. Subsequently, we developed a tool
to capture relevant coding information about the STD within

*Work supported and funded under the Department of Defense,
US Army Strategic Defense Command, under the auspices of the
Department of Energy.

535

the CASE environment and translate it into SNL syntax.
Below, we describe the salient features of the SNL, and
explain how the translator is used to produce a complete
SNL module from the STD.

II. STATE NOTATION LANGUAGE

We designed the SNL to be consistent with the STD
methodology and applicable to the existing run time
environment that we use at the Los Alamos National
Laboratory.[6-8] Following the Mealy convention for STDs,
we specify both the events and the actions on the transition
between states, and allow only the state name to appear in
the state as in Figure I.

v < 2.0
{ turn light_off }

I
{ tum_light_off }

State Name

~ Event Statement
v > 2.5

{ turn.Jight_on } "'

Action
On

Figure 1. Example of a State Transition Diagram.

In the above example there is only a simple relational
expression, which involves one event, the change in the value
of variable "v". The SNL is designed to handle more
complex event expressions, as well as multiple events.
Events may be associated with database channels and time
delays. Actions may include calculations, outputs to
database channels, and calls to procedures.

Rather than invent yet another new language, we based
the SNL on a comprehensive subset of C, along with some
relatively minor additions to handle events, actions, and
states. We simplified the coding by allowing the programmer
to associate run time database channels with a C variable.
Figure 2 shows the complete program that implements the
STD in Figure I in SNL syntax.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE02

CASE and Software Engineering

S15CSE02

535

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

program detect_HV_level;

float
assign
monitor

v;
v to "HV_PS_Ol:output_volts";
v;

short
assign

light;
light to "HV _PS_Ol: hv _light 11

;

SS testHV {
state !nit {

when () {

}

light = O;
pvPut (light) ;

} state Off

state Off {

}

when (v > 2500.)
light = l;
pvPut (1 ight) ;

} state On

state On {

}

when (v < 2000.) {
light = O;
pvPut (light) ;

} state Off

Figure 2. A SNL Control Program.

A complete program contains a program statement, a
declaration section, and one or more state sets (designated by
"ss" in the SNL). Within a program, multiple state sets
correspond to multiple STDs. Some of the SNL features
include:

Statement

program

assign

monitor

SS

state

when

pvPut

pvGet

Provides a name for run time execution.

Assigns or associates a variable with a database
channel.

Causes the channel value to be returned
asynchronously whenever it changes by a
significant amount.

Specifies the start of a state set.

Specifies a state by name.
'.

Specifies a transition, with the corresponding
events. When is followed by the event and
action statements and the next state.

Function to put a value to a database channel.

Function to get a value from a database
channel.

536

The SNL is block structured, as in C. A state may have
multiple when statements, corresponding to multiple
transitions from that state. Other features of the language
include: (1) macro definitions within database names, (2)
network connection status of database channels, (3) access to
channel alarm status, and (4) synchronization through event
flags. A state notation compiler generates efficient
reentrant C code from the SNL.

On the target processor a sequencer program initiates
and controls the execution of a task for each state set. The
sequencer establishes connections to database channels and
handles asynchronous events, such as might occur on a
monitored database channel or loss of a network connection.

III. INTEGRATING THE SNL INTO THE
CASE TOOLSET

The user first builds a model within the Teamwork
environment. By following existing conventions for real
time analysis and design[9], the Tuamwork will provide
various checks on the design. The specification for a
program begins at a process bubble within a data flow
diagram (DFD). An example is show in Figure 3.

.. --~
• • • sl

.. ~
.. .. ··.

s2

Figure 3. Part of a DFD Showing Control
Connections to C-Specs.

Two "control flows" (dashed lines) from bubble 3 in this
DFD connect to the control specifications (C-Specs), sl and
s2. Each C-Spec contains a STD, which corresponds to a
state set in the program. Declarations, and other header
information are placed in the process specification (P-Spec)
that is contained within the DFD bubble. The events and
actions are placed in the STD on the transitions. Because
actions could be very complex - too many characters to fit
conveniently on the STD - each action must be specified as
the name of a P-Spec.

A translator builds the SNL program from the
Teamwork model. This translator accesses the CASE model
database using the Cadre Teamwork/Access interface
routines[lO]. To use the translator the user specifies the
model name, the bubble number (default bubble is 0), and
the output file for the SNL program. The topography of the
DFD and STDs determine the program structure, and the
contents of the STDs and P-Specs determine the details.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE02

S15CSE02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

536 CASE and Software Engineering

rv. EXPERIENCE AND FUTURE PLANS
We have used the translator on only a few simple test

cases. The CASE tool methodology is a little awkward to
use, especially when the programmer must go back and forth
between the CASE environment and the run time
environment during program debugging. On the other hand,
programmers have been highly pleased with the SNL. We
are investigating the idea of designing a graphic editor that
would be more appropriate than the CASE environment.

Although we have made no measurements, we estimate
that the use of the SNL rather than C has saved significant
programming time, and that performance approaches that of
programs written in C.

V. CONCLUSION
The STD paradigm is useful for implementing real time

control. Automating the translation from STD to a run time
program is expected to introduce fewer coding errors and
provide better design documentation. Acceptance of this
methodology may depend on providing a more user friendly
graphic interface.

VI. REFERENCES

[1] Ward, Paul T. and Stephen J. Mellor, Structured
Development for Real Time Systems, 3 vols.,
Prentice-Hall Inc., Yourdon Press, 1985.

[2] Teamwork/RT User's Guide, Release 4.0, Cadre
Technologies Inc., Providence, RI.

[3) Kozubal, A L. R. Dalesio, J. O. Hill, and D. M.
Kerstiens, "A State Notation Language for Automatic
Control," Los Alamos National Laboratory report
LA-UR-89-3564, November, 1989.

[4] Atkins, W., "Using the EPICS Sequencer Tool to
Automate the OTA Vacuum System, " submitted to

Particle Accelerator Conference, San Francisco,
California, May 6-9, 1991.

[5] Wilson, William L., Marcus W. May, and Andrew J.
Kozubal, "Rapid Development of a Measurement and
Control System for the Advanced Free-Electron
Laser," submitted to Thirteenth International
Free-Electron Laser Conference, Santa Fe, New
Mexico, August 26-30, 1991.

[6] Kozubal, A J., L. R. Dalesio, J. 0. Hill, and D. M.
Kerstiens, "Run Time Environment and Applications
Tools for the Ground Test Accelerator Control
System," in Accelerator and Lczrge Experimental Physics
Control Systems, D. P. Gurd and M. Crowley-Milling,
Eds. (ICALEPCS, Vancouver, British Columbia,
Canada, 1989), pp. 288-291.

[7] Dalesio, L. R., 'The Ground Test Accelerator
Database: A Generic Instrumentation Interface," in
Accelerator and Lczrge Experimental Physics Control
Systems, D. P. Gurd and M. Crowley-Milling, Eds.
(ICALEPCS, Vancouver, British Columbia, Canada,
1989), pp. 288-291.

[8] Hill, J. 0., "Channel Access: A Software Bus for the
LAACS," in Accelerator and Large Experimental Physics
Control Systems, D. P. Gurd and M. Crowley-Milling,
Eds. (ICALEPCS, Vancouver, British Columbia,
Canada, 1989), pp. 288-291.

[9] Hatley, Derek J. and Imiaz A Pirbhai,, Strategies for
Real Time System Specification, Dorset House
Publishing Co., 1987.

[10] Teamwork/Access, Teamwork/RT User's Guide,
Release 4.0, Cadre Technologies Inc., Providence, RI.

537

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE02

CASE and Software Engineering

S15CSE02

537

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

