
The State Manager: A Tool to Control Large Data-Acquisition Systems 

Ange Defendini, Robert Jones, Jean-Pol Matheys, Pierre Vande Vyvre, Alessandro Vascotto 
CERN, Geneva, Switzerland 

Abstract 

The State Manager system (SM) is a set of tools, 
developed at CERN, for the control of large data-acquisition 
systems. A dedicated object-based language is used to describe 
the various components of the data-acquisition system. Each 
component is declared in terms of finite state machines and 
sequences of parametrized actions to be performed for 
operations such as the start and end of a run. The description, 
written by the user, is translated into Ada to produce a run­
control program capable of controlling processes in a 
distributed environment A Motif-based graphical interface to 
the control program displays the current state of all the 
components and can be used to control the overall data­
acquisition system. The SM has been used by several 
experiments both at CERN and other organizations. We 
present here the architecture of the SM, some design choices, 
and the experience acquired from its use. 

I. INTRODUCTION 

Today's large data-acquisition systems are composed of an 
increasingly large set of programs which prove difficult to 
control. Furthermore, the different programs are not 
independent but co-operate and need to be synchronized: for 
example, they must be started and stopped in a given order. 
Finally, a system composed of many different programs is 
difficult to operate if one has to interact with each of these 
programs. 

The SM [1,2] is a neat and flexible solution to this 
problem. It is a tool for building distributed run-control 
systems by means of a dedicated object-based language. 

The system to be controlled is decomposed into a set of 
objects. Objects correspond to a part of the system: a program 
or a subsystem. Each object must then be described as a state 
machine, its main attribute being its current state. The state 
can take any value in a list of values declared by the user in 
his SM program. An object can interact with other objects by 
sending commands to them. The command triggers the 
execution of an action, which is terminated when the object 
reaches a new state. 

Each activity of the data-acquisition system to be 
controlled should be handled by a single process. These 
processes are called associated processes because they are 
associated with an SM object. The SM communicates with 
them via messages handled by the OSP package [3]. The SM 
sends the commands triggering the execution of actions, and 
the associated processes reply when they assume a new state. 

524 

These messages constitute the interface between the SM and 
the associated processes. The same interface is used by an 
overall control program to send commands to the SM itself as 
shown in Figure L 

Trigger 
program 

SM program 

Tape 
program 

Control 
Program 

SM objects 

Associated 
programs 

Figure L The SM program and the external world. 

The communication package deals with distributed 
environments and thus allows commands to be sent to 
processes running on remote machines. 

The objects are divided into two categories: 
- The associated objects are associated with a program 

dealing with a device or an activity. 
- The objects of the second category correspond to abstract 

entities that fonn part of the description of the system. They 
are internal to the SM. 

The SM program written by the user is translated by the 
SM translator into Ada [4). This Ada code is then compiled 
and linked to produce an executable image. The execution of 
this image will activate the run control and establish the 
communication with the associated processes. 

II. THESMLANGUAGE 

A. Object declarations 

The SM language contains declarations and instructions. 
The declarations are used to define the name of an object, its 
states, and actions. An example of a state machine for an 
object 'RUN' is given in Figure 2. 

The corresponding SM declarations are: 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP06

S14OOP06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

524 Object Oriented Programming & Techniques



object: RUN 
state: DORMANT 

action: START 
state : ACTIVE 

action: PAUSE 
action: STOP 

state: PAUSED 
action : RESUME 

Figure 2. Example of a state machine. 

The execution of an action is different, depending on 
whether the object is associated or not. For an associated 
object, the execution of an action consists of sending a 
command to its associated process. When the process has 
terminated the execution of this action, it will return to its 
new state, which is mimicked by the associated object. For a 
normal object (not associated), the execution of the action 
consists of the execution of a sequence of SM instructions. 

B. The instructions 

Four basic instructions are contained in the language. 
The DO instruction is used to send a command 

asynchronously to an object The sender carries on with its 
own execution after the command has been sent. The 
command is put into a queue if the receiver is not ready to 
execute. A queue of pending commands is maintained for each 
object in the system. The next command is delivered to an 
object when this object is ready to accept it, i.e. when the 
object is in a stable state and is not executing any action. 

The sequence of instructions corresponding to an action is 
terminated by the instruction 'TERMINATE ACTION 
/STATE=state name'. This instruction can be placed anywhere 
in the code, thus stopping the execution of the code and 
putting the object in a stable state specified in the instruction. 

The IF instruction tests the state of one or many objects 
and combines the results in a logical expression. All the 
commands present in the object queue must be executed before 
testing the object state. The IF instruction synchronizes the 
object executing the IF statement with the objects whose state 
is tested in the instruction. The language also specifies a 
special state, the 'dead state', which is assumed by an 

'i?.'i 

associated object when the program associated to it is not 
running. This special state allows testing in the SM code 
whether the associated program is running or not 

The WHEN instruction triggers the execution of an action 
spontaneously when a logical expression based on the states 
of objects becomes true. This instruction is used to react 
asynchronously to a state change in the system. 

The example below uses the four basic SM instructions: 

object: RUN 
state : DORMANT 

action : ST ART 
do MOUNT TAPE 
do START TAPE 
do ENABLE TRIGGER 
if (TAPE in_state WRITING) and 

(TRIGGER in_state ENABLED) then 
terminate_action/state=ACTIVE 

else 
terminate_action/state=F AILURE 

end.if 
state : ACTIVE 
when TAPE in_state END_OF_TAPE do STOP 

action : STOP 
do DISABLE TRIGGER 
do STOP TAPE 
do DISMOUNT TAPE 
terminate_action /state= DORMANT 

state: FAILURE 
action : RESET 

do RESET TAPE 
do RESET TRIGGER 
terminate_action /state=OORMANT 

C. The SM domain and the visible objects 

The object name has to be unique in one SM program 
because the object must be addressable unambiguously. 
However, this may be a limitation in big systems composed 
of the repetition of similar subsystems. It may also be easier 
to divide a big system into smaller SM programs. This is 
what the SM domains are for (Fig. 3). The SM domain is a 
logical domain that consists of one, and only one, SM 
program and its associated programs. The SM domain limits 
the visibility of an object. The name of the object must be 
unique in one domain, but the same object name can be used 
in different domains. 

An object belongs to one domain only, but it may be 
rendered 'visible' to outside domains. One SM program can 
therefore be controlled from another SM program. Figure 3 
shows an example of a top-level SM controlling two other 
SMs in different domains. 

The way to invoke an object of another domain is to 
specify explicitly its domain as shown in the example of 
Figure 3: the SM program of the domain MAIN contains 
references to the objects 'TPC::RUN' and 'HCAL::RUN'. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP06

Object Oriented Programming & Techniques

S14OOP06

525

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Domain MAIN 

SM program 

SM program SM program 

Domain TPC Domain HCAL 

Figure 3. Example of use of the SM domain. 

D. The classes and the access objects 

With the declaration statements seen up to now, the user 
has to declare each object in the SM program. However, it is 
quite common to have systems where many objects are 
identical, but not their names. The notion of class has been 
introduced to cope with this case. A class of objects is similar 
to a data type in standard programming languages. The 
declaration of a class must define the class name, its states, 
and its actions. Once a class has been defined, it is sufficient 
to invoke the class name in the declaration of the objects that 
belong to that class. The following example shows the 
declaration of a class 'TAPE', and of two objects T APEi' and 
TAPE2' of the class TAPE': 

class: TAPE /associated 
state : AV All.ABIE 

action : MOUNT 
state : MOUNTED 

action : DISMOUNT 
object : TAPE! is of class TAPE 
object : T APE2 is of class TAPE 

This feature improves the readability and the 
'maintainability' of the code, and reduces the size of the 
declarative part of the program. 

A special type of object has been introduced to handle an 
object belonging to a class: the access object, which is like a 
pointer to any object of a given class. The 'access' statement 
specifies which object of the class is being accessed. The 
basic SM instructions can use the access object to refer to one 
object of a class indirectly: 

object: CURRENT_ TAPE is access to class TAPE 
state : NOT_USED 

action: SELECT_TAPEI 
access TAPE 1 

do MOUNT CURRENT_T APE" 

526 

if(CURRENT_TAPE" in_state MOUNTED) then 

E. Command parameters 

Some associated programs may need parameterized 
commands. Parameters are specified in the SM code as simple 
strings or as logical names translated at run-time. The 
parameters are appended to the string of the command before it 
is sent to the associated process. An example is given below. 

do MOUNT {"/LABEL=" VOLUME) CURRENT_ TAPE" 

ill. 1HESTA1EMANAGERANDTIIE 
EX'IERNAL WORID 

A. The control program 

The SM program itself can be controlled at run-time by a 
'control program', which can send a command to the SM with 
a call to a subroutine. The control program can also examine 
the current state of the system. A library of routines is 
available for the communication between the control program 
and the SM. 

A general purpose control program has been built using 
the Motif graphical user-interface toolkit. Each object is 
shown on the screen as an icon. The user interacts with an 
object by clicking on its icon to reveal a popup menu. The 
user can send a command to the object, see the object's past 
states and actions, and view the queue of actions to be 
performed by an object. The display shows one domain at a 
time. This domain can be selected by the user. 

Many aspects of the display can be customized by the 
user; objects icons can be hidden, moved and replaced by user­
defined ones. The user's personal configuration can be saved 
and restored automatically when the display program is 
restarted 

B. The associated programs 

The associated programs running under the control of the 
SM must conform to a well-defined interface. They must be 
command-driven and send back their state when it has been 
modified. A library of routines is available for the 
communication between the associated processes and the SM. 

The simplest structure of an associated program is as 
follows: 

C Initialization call 
callSMUNIT 

C Associate the program with an object 
call SMI_ASSOCIATE (object_name) 
do while (program active) 

C Receive next command to execute 
call SMI_GET_COMMANDW (command) 

C Decode the command 
C Return new state after execution 

call SMI_TERMINATE_COMMAND (state) 
end do 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP06

S14OOP06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

526 Object Oriented Programming & Techniques



C. The multiple-state associated objects 

Some associated programs may be difficult to describe in 
tenns of a state machine with a unique current state. It is 
possible to divide them into sub-objects, each of which have 
their own state. A sub-object can be a device that the program 
has to deal with, or a level of alarm, and so on. The result of 
this division into sub-objects is that the object itself has 
many concurrent states 

Extra SM instructions, not described above, are required to 
fully define object's state machines. A tool exists to help the 
user generate associated programs state machines. 

N. IMPLEMENTATION 

The translation of the SM language into Ada proceeds 
directly by the semantics of its main instructions. 

Each SM object executes its actions in parallel with the 
other objects. Each object is translated into an Ada task which 
is an independent thread of code. The current state of an object 
becomes a variable with a value equal to one of the value of 
an enumerated type. Actions are translated into Ada rendez­
vous, where two tasks are synchronized. 

However, the SM action is asynchronous whereas the Ada 
rendez-vous is synchronous. Therefore, for each object, a 
second Ada task is introduced to handle the queLie of pending 
actions, to disable its access and to produce the asynchronism 
needed for the SM action. The two Ada tasks corresponding to 
an object are shown in Figure 4. 

---IP- accept PUT 
01 
acoopt GET 

and 

QUEUE 

loop 

QUEUE.GET 

coda 
OI 
accept 
eccapt 

end 

task OBJECT 

Command Queue 

Figure 4. The Ada code corresponding to an object 

As described before, the IF instruction requires some 
synchronization between the object executing the IF statement 
and the objects whose states are evaluated in the condition. 
Two rendez-vous of the task 'Object' block and unblock the 
execution of an object at the beginning and the end of the IF 
statement. 

For example consider the following SM instructions. 

object :RUN 

do MOUNT TAPE 
if (TAPE in_state MOUNTED) then 

The DO instruction is translated into a rendez-vous with 
the QUEUE task to add an action to the queue of the 
destination object The IF instruction causes the TAPE object 
to block, its state to be evaluated by Run, and then to 
unblock. 

QUEUE(TAPE).PUT(MOUN1) 
QUEUE(TAPE).PUT(W AIT_IF) 
if (OBJECT(TAPE).STATE=MOUNTED) then 
endif, 
OBJECT(T APE). CONTINUE 

In addition, a dedicated Ada task consists of all the WHEN 
instructions contained in the program. This task: is scheduled 
each time an object assumes a new state. The task evaluates 
all the WHEN conditions and adds the appropriate actions to 

the queues. 

Y. CONCLUSION 

The SM is a new approach to the problem of run control. 
It has proved to be both flexible and reliable, during its use at 
CERN in collaborations such as DELPHI, OBELIX, and 
Omega. 

By coding associated programs according to simple 
principles, SM provides an object-based approach to DAQ 
design that benefits the control and maintenance of the 
system. 

VI. REFERENCES 
[1] J. Barlow et a1., "Run Control In Model: The State , 

in Proc. 6th Conf on Real-Time Complller Applications in 
Nuclear, Particle, and Plasma Physics, Williamsburg, 
Virginia, 1989 [IEEE Trans. Nuct Sci. NS-36 (1989) p. 
1549] 

[2] A. Deffendini, B. Franek, P. Vande Vyvre and A. Vascotto, 
The state manager user mmual, CERN-ECP internal note, 
Geneva. This document can be obtained, upon request,, from 
!he authors, c/o CERN. 

[3] R. Jones, OSP user's guide, CERN-ECP internal note, 
Geneva. ThU; document can be obtained, upon request, from 
the author, c/o CERN. 

[4] Ada Joint Program Office, United States Department of 
Defence, Reference Manual for the Ada P.rogramming 
Language, ANSI/MIL-STD-1815A, Washlllton D.C.: 
Government Printing Office, 1983. 

527 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP06

Object Oriented Programming & Techniques

S14OOP06

527

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


