
Simplified Approach to Control System Specification and Design
Using Domain Modelling and Mapping.

G.A. Ludgate
TRW.MF, 4004 Wesbrook Mall, Vancouver, V6T 2A3, Canada

Abstract

Recent developments in the field of accelerator-domain and
computer-domain mort..elling have led to a better understanding
of the "art" of control system specification and design. It now
appears to "compile" a control system specification to
produce the architectural design. The infonnatioo required by
the "compiler" is discussed and one hardware optimization algo-

presen:ted. The desired characteristics of !he hardware and
SQftware components of a distributed control system architecture
are discussed and the shortcomings of some commercial
produclS.

I. INfRODUCTION
more emphasis has been on the gather-

ing and validating of requirements for automated control systems
before are built [1, 2, 3, 4, 5]. Our earlier work reported on
the of the KAON Factory Central Control System
(KF-CCS), two emerging techniques in the application of
ob)ect·-Ori<entl::d principles to requirements svecmcation
domain driven [2) and dynamic object modelling [3].
A re-examination of the problems encountered these two
contemporary techniques has led to a better understanding of
both the use of domains in creating and a system
specification and of the design-processes used to transform the

spe:cii1icatioo into executable code.
ooi;sible to "co.'llpile" a control sysrem from its

"compilers" the
mi<:ro-oroieessor machine code) must be fxactly

described before the "compiler" can be created. With contem-
muuetnng approaches we oow have to

construct such a complete description of the active elements that
form control and to detennine an strategy
for COiiflj;:JliW.ll!Jll

II. PROBLEMS WITH EARLIER APPROACHES
Dynamic object modelling [3] advocates, from the outset, the

determination of the context of a system-to-be-built and its
presentation in the form of a Context (Fig. 1). A
Context follows from an analysis of a problem, the
specification of a solution and the desire to implement the
solution as an automated system. This approach leads to an early
identification of external devices (Tenninator Objects) that are
to be interfaced to and controlled by the system. Only informa­
tion flows between the system and the Terminator Objects are
shown on a Context Diagram.The single bubble represents the
system-to-be-built; boxes represent Terminator Objects.

The internal structure of the system-to-be-built, termed the
Object Communication Diagram, is comprised of both the static
and dynamic system-objects in the solution. Figure 2 shows an
example internal structure for Fig. l. Static objects are repre­
sentation of conceptual entities in the solution (e.g. schedules,
lists etc.) while each dynamic object represents the dynamic
behavior of its associated Terminator Object, as seen through
their mutual interface (the infonnation flows between the
dynamic the Terminator Object).

Master
System

Settings

Values

Fig. 1 A Conlllxt Diagrnm of the KF-CCS. The single bub­
ble represents the system-to-be-built; boxes represent Terminalor Ob­
jects.

During the KAONFactory Study the premature focussing on
KF-CCS systems-analysis [3] led to some difficulties with users
and reviewers appreciating the role of the (predominantly
software KF-CCS in the much larger context of control-
ling KAON h'>..am production, and the affect of interac-
tions between its Terminator Objects. AS uper-Context Diagram
was therefore created to show the "bigger picture" (Fig. 3). In
the KAON interactions between Terminator Objects
will be due, for example, to the Master Timing System that will
determine (predominantly in hardware) the exact timing of all
beam related events e.g. beam transfers between any of the 5
rings.

Domain driven modelling [2J, on the other hand, does not
require this premature move into systems-analysis. In the early

505

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

Object Oriented Programming & Techniques

S14OOP02

505

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

phases of KF-CCS planning a more general fonn of modelling
would have been extremely helpful in understanding the opera­
tion of the KAON Factory. With this knowledge in hand, one or

Master Timing
System

Fig. 2 The Object Commwrlcation Diagram for Fig. 1 (inllide the bub­
ble) represents the composition of the KF-CCS in terms of system-ob­
jects and the infonnation flows between them and the external
Terminlltor Objects.

more systems analyses could have been performed to ascertain
the suitability of automating various tasks as part of the KF-CCS.

Models that allow the precise description of what is required
to be accomplished in a particular field of interest and when, but
regardless of how it is to be carried out, are tenned domain
models. A complete KAON Factory domain model would show
the desired behavior of the KAON Factory regardless of whether
control systems had been constructed to achieve the behavior or
whether the devices naturally embodied the required behavior.
To precisely define the nature of domain models and their use in
control system building, a brief introduction to domains follows.

ill.DOMAINS
One way humans organize their knowledge of the world is in

terms of domains e.g. the domains of banking, physics, art, law,
ete. A domain serves as a context within which technical tenns
and expressions usually have a single meaning; for instance, the
expression "The grounds are fine." has completely different
meanings in the domains of electronics, gardening, debating and
coffee making. The term "domain specific language" highlights
this re-use of old words, with new meanings, as an appropriate
manner of describing a domain.

Domains can include other domains (e.g. divorce laws are
part of all laws), can overlap other domains or be completely
independent of each other. The contents of a domain are deter­
mined by a set of criteria tenned Domain Criteria. It is implicitly
understood that the criteria for common-place domains are

known to most people. Thus, for example, no-one would con­
sider "Magnets" as being part of "Banking".

We can capture the essential details of a domain by making
models. These models take many different forms, for example:

• written text, for qualitative domains like medicine, or
• written text with embedded mathematical fonnulae, for

quantitative domains like physics.
These models usually describe a domain in terms of five

important types of knowledge, namely:
• concepts used by experts working within that domain,
• facts about the individual concepts,
• facts relating two or more concepts,
• interactions that occur, and
• events and conditions that cause interactions within the

domain.
This time honoured approach to describing domains, in terms

of the "things" that experts believe are part of the domain and
the relationships between them, has recently been called "the
object-oriented approach" by designers and builders of software
systems. The object-oriented approach has been gathering sub­
stantial support from vendors and builders alike in recent years
due to its uniform manner of modelling both problems and

-

Master Timing
System

Fig. 3 The Super-Context Diagram of Fig.1 illustrat.es the "fit" of the
KF-CCS into its inunediate environment.

solutions, and the availability of languages that support
"software objects". The support has been a "grass roots" move­
ment, arising initially from an understanding of the benefits
accrued by using object-oriented programming languages on a
project; and later expanding to encompass the earlier analysis
and design modelling phases of a software project

IV. DOMAIN BASED MODEU.ING
One can "view" domain based modelling as being one more

step down the historical path of increasingly structuring systems

506

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

S14OOP02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

506 Object Oriented Programming & Techniques

their construction. Originally, coding was performed in
machine later in assembler and today in FORTRAN-like
languages; structured programming, s!ructured design, objects
and applications were more recently created to manage the
complexity of large software systems.

A more understanding of Ibis structuring can be
obtained by "viewing" it as successful attempts at constructing
new domains wilh associated domain specific languages. The
elements of each new domain were abstractions of useful fea­
tures from older domains; lhus Structured Design highlighted the
composition of programs from procedures calling other proce­
d1m11 and passing dalalcontrol coupks. Its approach was lan­
guage independent in that it abstracted away the details of any
procedure's implementation but maintained the usefulness of
being able to consider groups of statements as producing definite
results from given inputs.

All tr.!!iditlonal and most contemporary, conunercial.ly avail­
able object-oriented development methodologies and languages
are not domain based in that they do not recognise the
existence of domains and their Domain Criteria. In solving a
.-.............. problem it is, therefore, possible to incorporate any

what-so-ever into the solution domain. It would strike
most of us as being unusual if a system specification
required but it does not seem that a "Control

Sf.1C1[:l1U::at1.1:in should require "VME«.
Both of these violate the basic structwinR

any domain driven that attempts to
of elements of a (the nroble:m -~··--·,

with elements of a solution (the solution domain).
Most control systems builders support this domain-driven

de">'el01pment heuristic but express it in terms of
designs for control systems - a layer's contents,
modifiable without affecting adjacent [6,7]. In such

designs, elements from one do not appear in other
e.g. tUtworlr:. links inside the layer.

iuuuvuw•" in a scientific domain has oft.en led to a fonnal
mathematical of the between the
important concepts in the domain but to a completely informal
treatment of the 4 other types is a
CA<1u1vu;: of this mooolllin,g """'''"""''h

Ol:l1ect·-on,enttxi at>Prc'8Cn to modelling in a domain seeks
to redress this imbalance and reduce the emphasis on relation-

To achieve this goal, object-oriented domain analysis
embodies a number of model-types that are unfamiliar to
physicists and to most builders of automated systems. The
models-types tlUl1 capture the five types of knowledge, cited

are:
Extended Entity Relationship Diagrams (EERD); to
model the entities and concepts in a domain, their proper­
ties and lhe relationships between them,

• Staie Transition (STD); to model the modes of
behavior of each entity and the causes of transitions be­
tween the modes,

• Object Structure Diagrams (OSD); to model the processes
inherent in each entity and how these effect entity proper­
ties and behavior,

Interaction (OID); to model the causal
relationships between the entities.

Domain models are, therefore, models of an entire field of
knowledge in the same way tlUl1 "PV-nRT" is a physicist's
model of an Ideal Gas (a model which could be incorporated into
an object-oriented domain model ofldeal Gases as "viewed" by
physicists).

Domain models can only be validated by:
• experimenting with physical entities in the domain (e.g.

RF cavities and Magnets for KAON), or
• questioning domain-experts about conceptual entities in

the domain (e.g. a Beam Schedule, Startup Sequence),
and comparing the results with predictions from the domain
models. In like m.annec the completeness of domain models can
only be established by consulting a domain expert; but once the
domain models are deemed complete and valid they can serve
as a re-usable resource for projects undertaking the automation
of activities in the domain. Domain models serve as the only
criteria against which the "correctness" of any automation
project is established .

V. MODEILING IN A DOMAIN
To manage the complexity of modelling in a given domain

an observer should represent the domain from a parti.cular view­
point 'Those features that lhe observer deems essential to the
vwWO«Jmt must be included in ilie models while all other ir­
relevant features are omitted. The resulting model is a particular
abstract domain. The most important viewpoints of
a domain, termed the Canonical Domain Views, are those of the
different types of people working in the domain.

The domains relevant to the builders of the KF-CCS were
most identified from an analysis of all personnel that will
be involved in the production of the 30 GeV proton beams [3].
As are frequently assigned multiple jobs, the
focussed on eliciting the roles to be played by those personnel in
oroduc:ini;z beam. The view of the KAON perceived by
any person out a role defines a description of
some relevant (caoonical) domain. As several roles often share
a common or similar view of lhe KAON Factory it follows that
the number of Canonical Domain Views is limited by the number
of roles identified.

An example KAON domain-model
4) clearly shows the r..1aster Timing System (MTS}, its

interaction with each beamline device and wi!h an Otx~rntl:>r
Personnel assuming the latter role use the MTS to tune the beam
in the synchrotrons after all beamline devices have been turned
on. Unlike in Fig. 1, this domain model does not distin­
guish between lhose functions carried out by hardware or
software, and corresponds to lhe way Beam Physicists describe
the operation of the KAON Factory.

A complete model of the domain, formed from a union of the
Canonical Domain Views, is termed Uie Canonical Domain
Model.

507

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

Object Oriented Programming & Techniques

S14OOP02

507

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

VI. CANONICAL DOMAINS RELEVANT TO
CON'IROL SYSTEM BUILDERS

In the K.AON Factory domain, which is concerned with
delivering a 100 microampere proton beam to 30 GeV, the
different types of personnel involved [3] have been used to
identify several canonical domains, for ex.ample:

• the beam-delivery domain; in which K.AON Factory
Operators and Beam Physicists concern themselves with
producing an optimum 30 Ge V proton beam and gaining
an understanding of the synchrotrons,

• the equipment management domain; in which Equipment
Specialists coocero themselves with monitoring and con­
trolling devices required to deliver the proton beam,

• the KF-CCS equipment management domain; in which
KF-CCS electronics technicians concern themselves with
maintaining the equipment related to the KF-CCS opera­
tion,

• the KF-CCS implementation domain; in which KF-CCS
Managers, Analysts, Designers and Programmers concern
themselves with the construction of software according to
specifications deduced from the above domains.

Clearly there are relationships between these domains. The last
2 domains are solution domains for problems arising in the first
2 domains, but not vica versa; that is, in trying to implement the
required behavior of K.AON Factory beam transport devices,
when delivering beam, it is easiest to employ lntellige nt control
system technology to control relatively rm-intelligent, passive
beam transport devices.

We noted earlier that the requirements for the KF-CCS could
have been derived by performing a systems analysis on a relevant
K.AON Factory domain model, had it been available. Similarly,
the requirements for the KF-CCS Implementation could be
derived by performing:

• a domain analysis of control systems implementation tech­
nologies, followed by

• a system analysis of the domain to highlight the separation
of control system functions between available hardware
and software.

The latte.r analysis was performed during the 1989 K.AON Fae,
tory study for hardware costing purposes, while the former
analysis is presently underway.

VII. CONTROL SYSTEMS IMPLEMENTATION DOMAIN
Control systems experts are well aware of their domain of

expertise. Figure 5 shows an (incomplete) EERD of a traditional,
generic central controls system implementation domain, high­
lighting the major entities in the domain and some of the relation­
ships between them. A short explanation of the EERD follows
with the entities capitalized for ease of reference the first time
they are referred to.

All working DESIGNERs and PROGRAMMERs use
WORKST A TIONs to create the source classes from the CON-
1ROL SYSTEM SPECIFICATION. The implementation lan­
guage, represented by COMPILER, is object-oriented,
supporting the separate compilation of SOURCE CLASSes that
are then linked intoan EXECUTABLE IMAGE by the LINKER.

The executable images are run within TASKs by a CPU in a
PROCESSOR MODULE. They communicate with each using
ITCs (inter-task communication links). if on the same processor,
and LAN LINKs if on different processors.

:Each beam transport and beam diagnostic DEVICE is inter­
faced to the processors by a single DEVICE I/O MODULE
placed in a VME CR.A TE

Processors have 2 types of storage: CPU MEMORY inside
the processor and disks mounted in DISK MODULEs. The
fonner provides volatile storage that is lost whenever power
fails, the processor fails, the processor is removed etc., while the
latter provides persistent storage that survives such an occurren­
ces.

I
I

/
I

I

Fig. 4 The Object Interaction Diagram for Fig. 1. This domain model
shows the entities in the domain as circles. Heavy, directed lines are
energy flows while thin-solid and dashed lines me information flows,

VIII. MAPPING
The CON'IROL SYSTEM SPECIFICATION entity (top

right of Fig. 5) is a model of a control system to be buill To
simplify discussions we will postulate this to be fully described
by only one model type, namely an Object Communication
Diagram (OCD); Fig. 2 for example. The OCD is, in tum,
composed of:

• a set of SYSTEM-OBJECT MODELs,
• a set of SYSTEM TERMINATOR MODELs, and
• a set of all INTER-OBJECT FLOW MODELs describing

information flows between System Objects and between
System Objects and Terminator Objects.

In addition, each SYSTEM-OBJECT MODEL describes:
• the INTRA-OBJECT FLOWs accepted by the object,
• the PROCESSes required to convert input flows to output

flows and

508

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

S14OOP02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

508 Object Oriented Programming & Techniques

nQl'fllal .
relationships

Relationship DUigram of a traditional controls system implementation domain. Entities in the domain
describes the type of relationships between entities.

• the information needed be STOREd to satisfy the
PROCESSes.

Each of the above models is a description of a particular type
of need that entities in the implementation domain must fulfil.
That is, we must find entities in the implementation domain that
are capable of as required by the models. This
association of a model with rui implementation entity is termed
ma1wtmt. Perfonning a mapping (i.e. translating) is similar to
compiling the description of an algorithm, in a high level lan­
guage, into an equivalent in an assembler language.
The latter could , in tum, be assembled, linked and executed.

To illustrate the notion of mapping we will consider the
various ways of implementing a CONTROL SYSTEM
SPECIFICATION using our suite of implementation entities
(Fig. 5).

When all system-object PROCESSes are of the discrete
variety and we are using a traditional processor, we can map
{denoted by the"-->" symbol) these models as follows:

• both typ...s of "flows" ·-> the MESSAGEs accepted by a
SOURCE CLASS,

• "processes" -·> the METHODs of a SOURCE CLASS (a
named-method is invoked by the class receiving a message
with the same name), and

• "stores"--> the INSTANCE VARIABLES of a SOURCE
CLASS,

• ft system-object model" -> SOURCE CLASS,

'i09

,. "control system specification" --:>APPLICATION, and
• "terminators" --> DEVICE IIO MODULEs.

This mapping implies:
• the control system software is a single application pro.

gram,
• that it deals with events in the real world sequentially, and
• that all tenninator modules must be in the same VIVi.E

crate.
In a large control system this latter implication is unaccep­

table. The distributed nature and quantity of terminators will
require a large number of terminatar IIO modules in several
VME crates to interface them to the application software. A local
processor will also be required in each crate to access the J/O
modules in that crate. The relevant application software must
also be running in that processor.

From the OCD of Fig. 2 one can see that the simplest choice
of application software to be run in a particular processor must
correspond to the system-objects for the tenninators interfaced
into that crate. Flows between each terminator and the processor
would then occur within the single crate.

With this choice of allocating system-objects to processors
the original single program now becomes fractured into several
programs. Now flows between these distributed system-objects
cannot all be mapped to messages; those between objects on
different processors must be mapped to LAN LINKS.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

Object Oriented Programming & Techniques

S14OOP02

509

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Now consider the changes required when some PROCESSes
are CONTINUOUS TRANSFORMs. As these processes must
be able to proceed independently they must be mapped to
TASKs. In addition the INTRA-OBJECT FLOWs to these
processes must be mapped to ITCs (inter-task communication
channels). Now a single system-object may be distributed across
several tasks, and there is no reason for these tasks to reside on
a single processor. If a system-object is fractured across proces·
sors then its INTER- and INIRA·OBJECT FLOWS must be
mapped to ITCs and LAN LINKs.

IX. PERFORMING AND EVALUATING THE MAP
Given an application program, implemented as a set of tradi­

tional communicating programs running on a set of processors,
there are many reasons for selecting a particular arrangement of
programs to processors. Criteria such as:

• access to critical resources e.g. particular 1/0 modules,
• communications volume to and from critical resources,
• response times to events,
• meeting deadlines (in hard real-time systems),
• computational "volume" per mode of operation,
• computational "volume" per event,
• processor~s capability, capacity and reliability,
• storage capability, capacity and reliability,
• network capability, capacity and reliability,

play important roles in determining the positioning of programs,
regardless of operating system and languase issues.

The mapping process, described above, leads ultimately to
the allocation of parts of SYSTEM-OBJECTs to multiple (sub­
application) programs. To simplify the establishment of this
mapping, initially, we have studied the case in which:

• system-objects were not fractured smaller than individual
PROCESSes, and

• all PROCESSes communicating with a terminator via its
IIO module were allocated to processors in the same crate.

The number of application program fragments to distribute is
then large but finite. We are presently investigating an algorithm
that would produce a "best" arrangement of programs among
processors by minimizing a "quality factor". The "quality factor"
depends on the values of all of the properties listed above. These
values will all be available from a control system implementa­
tion-domain model presently being completed for the KAON
Factory.

The simple mapping model presented here has difficulties
accounting for certain properties required by some systems - for
instance "fault tolerance". In a fault-tolerant system one would
require copies of a program to execute on different processors -
a feature that would increase the amount communications over
a solution in which all copies were allocated to the same proces­
sor. The role ofa processors "reliability" property in the "quality
factor" must be, therefore, to "repel" copies of like software.

510

X. CONCLUSIONS
The possibility of generating a mapping directly from a

control system specification now seems feasible. It relies upon:
• detailed domain and system models of the control system

implementation architecture (e.g. Fig. 5) and either
• a detailed mapping scheme that captures the experience of

control system designers, or
• a calculable figure of merit associated with each mapping

that could be minimized, say, to produce the "best" design.
Commercial code generator products have been available for

several years that are capable of creating executable systems
directly from structured designs. They are feasible because the
commercial computing domain is very mature and code gener­
ators tend to work with mainstream transaction management
products for which all interface software is provided.

It is timely to pursue the goal of developing control systems
at a higher "level" of abstraction. There are many benefits to be
gained by leaving the "technical details" to a new form of
"compiler" in much the same way as assemble: programs were
replaced by high level language programs. The final products
will be more uniform in design and more adaptable to technology
changes by "re-compilation". Future control system develop­
ment work at TRIUMF in support of the KAON Factory will be
directed toward developing such a "control system compiler".

XI. REFERENCES
[l] D.A. Dohan, G.A. Ludgate, E.A. Osberg, S. Koscielniak and C.

Inwood, "Definition study of the TRIUMF KAON FrictDry control
system project", Proceedings ICALEPCS '89, Nucl. Instr. and
Meth. A293 (1990) 6-11.

[2] C. Inwood, O.A. Ludgate, D.A. Dohan, E.A. Osberg and S. Kosciel­
niak, "Domain-driven specification teclmiquessimplify the analysis
of requirements for the KAON Factory central control system",
Proceedings ICALEPCS '89, Nucl. Instr. and Meth. A293 (1990)
390-393.

[3] E.A. Osberg, G.A. Ludgate, S. Koscielniak, D.A. Dohan and C.
· Inwood, "Dynamic object modelling as applied tD the KAON

control system«, Proceedings ICALEPCS '89, Nucl. Instr. and
Meth. A293 (1990) 394-401.

[4] J-L. Theron. "Design l!lldchecking of a large Ada real-time system''.
Proceedings ICALEPCS '89, Nucl. Instr. and Meth. A293 (1990)
373-376.

[5] G. Morpurgo, "SASD and the CERN Run-time coordinator",
Proceedings ICALEPCS '89, Nucl. Instr. and Meth. A293 (1990)
385-389.

[6] B. Kuiper," Accelerawrconttol.s at CERN: some converging trends",
Proceedings ICALEPCS '89, Nucl. Instr. and Meth. A293 (1990)
308-31!1.

[7} P. Clout and A Deneels, "Report of the Los Alamos accelerawr
automationapplication toolkit workshop", ProceedingslCALEPCS
'89, Nucl. Instr. and Meth. A293 (1990) 321-324.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP02

S14OOP02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

510 Object Oriented Programming & Techniques

