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Abstract 

Recent developments in the field of accelerator-domain and 
computer-domain mort..elling have led to a better understanding 
of the "art" of control system specification and design. It now 
appears to "compile" a control system specification to 
produce the architectural design. The infonnatioo required by 
the "compiler" is discussed and one hardware optimization algo-

presen:ted. The desired characteristics of !he hardware and 
SQftware components of a distributed control system architecture 
are discussed and the shortcomings of some commercial 
produclS. 

I. INfRODUCTION 
more emphasis has been on the gather-

ing and validating of requirements for automated control systems 
before are built [1, 2, 3, 4, 5]. Our earlier work reported on 
the of the KAON Factory Central Control System 
(KF-CCS), two emerging techniques in the application of 
ob)ect·-Ori<entl::d principles to requirements svecmcation 
domain driven [2) and dynamic object modelling [3]. 
A re-examination of the problems encountered these two 
contemporary techniques has led to a better understanding of 
both the use of domains in creating and a system 
specification and of the design-processes used to transform the 

spe:cii1icatioo into executable code. 
ooi;sible to "co.'llpile" a control sysrem from its 

"compilers" the 
mi<:ro-oroieessor machine code) must be fxactly 

described before the "compiler" can be created. With contem-
muuetnng approaches we oow have to 

construct such a complete description of the active elements that 
form control and to detennine an strategy 
for COiiflj;:JliW.ll!Jll 

II. PROBLEMS WITH EARLIER APPROACHES 
Dynamic object modelling [3] advocates, from the outset, the 

determination of the context of a system-to-be-built and its 
presentation in the form of a Context (Fig. 1). A 
Context follows from an analysis of a problem, the 
specification of a solution and the desire to implement the 
solution as an automated system. This approach leads to an early 
identification of external devices (Tenninator Objects) that are 
to be interfaced to and controlled by the system. Only informa­
tion flows between the system and the Terminator Objects are 
shown on a Context Diagram.The single bubble represents the 
system-to-be-built; boxes represent Terminator Objects. 

The internal structure of the system-to-be-built, termed the 
Object Communication Diagram, is comprised of both the static 
and dynamic system-objects in the solution. Figure 2 shows an 
example internal structure for Fig. l. Static objects are repre­
sentation of conceptual entities in the solution (e.g. schedules, 
lists etc.) while each dynamic object represents the dynamic 
behavior of its associated Terminator Object, as seen through 
their mutual interface (the infonnation flows between the 
dynamic the Terminator Object). 

Master 
System 

Settings 

Values 

Fig. 1 A Conlllxt Diagrnm of the KF-CCS. The single bub­
ble represents the system-to-be-built; boxes represent Terminalor Ob­
jects. 

During the KAONFactory Study the premature focussing on 
KF-CCS systems-analysis [3] led to some difficulties with users 
and reviewers appreciating the role of the (predominantly 
software KF-CCS in the much larger context of control-
ling KAON h'>..am production, and the affect of interac-
tions between its Terminator Objects. AS uper-Context Diagram 
was therefore created to show the "bigger picture" (Fig. 3). In 
the KAON interactions between Terminator Objects 
will be due, for example, to the Master Timing System that will 
determine (predominantly in hardware) the exact timing of all 
beam related events e.g. beam transfers between any of the 5 
rings. 

Domain driven modelling [2J, on the other hand, does not 
require this premature move into systems-analysis. In the early 
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phases of KF-CCS planning a more general fonn of modelling 
would have been extremely helpful in understanding the opera­
tion of the KAON Factory. With this knowledge in hand, one or 

Master Timing 
System 

Fig. 2 The Object Commwrlcation Diagram for Fig. 1 (inllide the bub­
ble) represents the composition of the KF-CCS in terms of system-ob­
jects and the infonnation flows between them and the external 
Terminlltor Objects. 

more systems analyses could have been performed to ascertain 
the suitability of automating various tasks as part of the KF-CCS. 

Models that allow the precise description of what is required 
to be accomplished in a particular field of interest and when, but 
regardless of how it is to be carried out, are tenned domain 
models. A complete KAON Factory domain model would show 
the desired behavior of the KAON Factory regardless of whether 
control systems had been constructed to achieve the behavior or 
whether the devices naturally embodied the required behavior. 
To precisely define the nature of domain models and their use in 
control system building, a brief introduction to domains follows. 

ill.DOMAINS 
One way humans organize their knowledge of the world is in 

terms of domains e.g. the domains of banking, physics, art, law, 
ete. A domain serves as a context within which technical tenns 
and expressions usually have a single meaning; for instance, the 
expression "The grounds are fine." has completely different 
meanings in the domains of electronics, gardening, debating and 
coffee making. The term "domain specific language" highlights 
this re-use of old words, with new meanings, as an appropriate 
manner of describing a domain. 

Domains can include other domains (e.g. divorce laws are 
part of all laws), can overlap other domains or be completely 
independent of each other. The contents of a domain are deter­
mined by a set of criteria tenned Domain Criteria. It is implicitly 
understood that the criteria for common-place domains are 

known to most people. Thus, for example, no-one would con­
sider "Magnets" as being part of "Banking". 

We can capture the essential details of a domain by making 
models. These models take many different forms, for example: 

• written text, for qualitative domains like medicine, or 
• written text with embedded mathematical fonnulae, for 

quantitative domains like physics. 
These models usually describe a domain in terms of five 

important types of knowledge, namely: 
• concepts used by experts working within that domain, 
• facts about the individual concepts, 
• facts relating two or more concepts, 
• interactions that occur, and 
• events and conditions that cause interactions within the 

domain. 
This time honoured approach to describing domains, in terms 

of the "things" that experts believe are part of the domain and 
the relationships between them, has recently been called "the 
object-oriented approach" by designers and builders of software 
systems. The object-oriented approach has been gathering sub­
stantial support from vendors and builders alike in recent years 
due to its uniform manner of modelling both problems and 

-

Master Timing 
System 

Fig. 3 The Super-Context Diagram of Fig.1 illustrat.es the "fit" of the 
KF-CCS into its inunediate environment. 

solutions, and the availability of languages that support 
"software objects". The support has been a "grass roots" move­
ment, arising initially from an understanding of the benefits 
accrued by using object-oriented programming languages on a 
project; and later expanding to encompass the earlier analysis 
and design modelling phases of a software project 

IV. DOMAIN BASED MODEU.ING 
One can "view" domain based modelling as being one more 

step down the historical path of increasingly structuring systems 
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their construction. Originally, coding was performed in 
machine later in assembler and today in FORTRAN-like 
languages; structured programming, s!ructured design, objects 
and applications were more recently created to manage the 
complexity of large software systems. 

A more understanding of Ibis structuring can be 
obtained by "viewing" it as successful attempts at constructing 
new domains wilh associated domain specific languages. The 
elements of each new domain were abstractions of useful fea­
tures from older domains; lhus Structured Design highlighted the 
composition of programs from procedures calling other proce­
d1m11 and passing dalalcontrol coupks. Its approach was lan­
guage independent in that it abstracted away the details of any 
procedure's implementation but maintained the usefulness of 
being able to consider groups of statements as producing definite 
results from given inputs. 

All tr.!!iditlonal and most contemporary, conunercial.ly avail­
able object-oriented development methodologies and languages 
are not domain based in that they do not recognise the 
existence of domains and their Domain Criteria. In solving a 
.-.............. problem it is, therefore, possible to incorporate any 

what-so-ever into the solution domain. It would strike 
most of us as being unusual if a system specification 
required but it does not seem that a "Control 

Sf.1C1[:l1U::at1.1:in should require "VME«. 
Both of these violate the basic structwinR 

any domain driven that attempts to 
of elements of a (the nroble:m -~··--·, 

with elements of a solution (the solution domain). 
Most control systems builders support this domain-driven 

de">'el01pment heuristic but express it in terms of 
designs for control systems - a layer's contents, 
modifiable without affecting adjacent [6,7]. In such 

designs, elements from one do not appear in other 
e.g. tUtworlr:. links inside the layer. 

iuuuvuw•" in a scientific domain has oft.en led to a fonnal 
mathematical of the between the 
important concepts in the domain but to a completely informal 
treatment of the 4 other types is a 
CA<1u1vu;: of this mooolllin,g """'''"""''h 

Ol:l1ect·-on,enttxi at>Prc'8Cn to modelling in a domain seeks 
to redress this imbalance and reduce the emphasis on relation-

To achieve this goal, object-oriented domain analysis 
embodies a number of model-types that are unfamiliar to 
physicists and to most builders of automated systems. The 
models-types tlUl1 capture the five types of knowledge, cited 

are: 
Extended Entity Relationship Diagrams (EERD); to 
model the entities and concepts in a domain, their proper­
ties and lhe relationships between them, 

• Staie Transition (STD); to model the modes of 
behavior of each entity and the causes of transitions be­
tween the modes, 

• Object Structure Diagrams (OSD); to model the processes 
inherent in each entity and how these effect entity proper­
ties and behavior, 

Interaction (OID); to model the causal 
relationships between the entities. 

Domain models are, therefore, models of an entire field of 
knowledge in the same way tlUl1 "PV-nRT" is a physicist's 
model of an Ideal Gas (a model which could be incorporated into 
an object-oriented domain model ofldeal Gases as "viewed" by 
physicists). 

Domain models can only be validated by: 
• experimenting with physical entities in the domain (e.g. 

RF cavities and Magnets for KAON), or 
• questioning domain-experts about conceptual entities in 

the domain (e.g. a Beam Schedule, Startup Sequence), 
and comparing the results with predictions from the domain 
models. In like m.annec the completeness of domain models can 
only be established by consulting a domain expert; but once the 
domain models are deemed complete and valid they can serve 
as a re-usable resource for projects undertaking the automation 
of activities in the domain. Domain models serve as the only 
criteria against which the "correctness" of any automation 
project is established . 

V. MODEILING IN A DOMAIN 
To manage the complexity of modelling in a given domain 

an observer should represent the domain from a parti.cular view­
point 'Those features that lhe observer deems essential to the 
vwWO«Jmt must be included in ilie models while all other ir­
relevant features are omitted. The resulting model is a particular 
abstract domain. The most important viewpoints of 
a domain, termed the Canonical Domain Views, are those of the 
different types of people working in the domain. 

The domains relevant to the builders of the KF-CCS were 
most identified from an analysis of all personnel that will 
be involved in the production of the 30 GeV proton beams [3]. 
As are frequently assigned multiple jobs, the 
focussed on eliciting the roles to be played by those personnel in 
oroduc:ini;z beam. The view of the KAON perceived by 
any person out a role defines a description of 
some relevant (caoonical) domain. As several roles often share 
a common or similar view of lhe KAON Factory it follows that 
the number of Canonical Domain Views is limited by the number 
of roles identified. 

An example KAON domain-model 
4) clearly shows the r..1aster Timing System (MTS}, its 

interaction with each beamline device and wi!h an Otx~rntl:>r 
Personnel assuming the latter role use the MTS to tune the beam 
in the synchrotrons after all beamline devices have been turned 
on. Unlike in Fig. 1, this domain model does not distin­
guish between lhose functions carried out by hardware or 
software, and corresponds to lhe way Beam Physicists describe 
the operation of the KAON Factory. 

A complete model of the domain, formed from a union of the 
Canonical Domain Views, is termed Uie Canonical Domain 
Model. 
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VI. CANONICAL DOMAINS RELEVANT TO 
CON'IROL SYSTEM BUILDERS 

In the K.AON Factory domain, which is concerned with 
delivering a 100 microampere proton beam to 30 GeV, the 
different types of personnel involved [3] have been used to 
identify several canonical domains, for ex.ample: 

• the beam-delivery domain; in which K.AON Factory 
Operators and Beam Physicists concern themselves with 
producing an optimum 30 Ge V proton beam and gaining 
an understanding of the synchrotrons, 

• the equipment management domain; in which Equipment 
Specialists coocero themselves with monitoring and con­
trolling devices required to deliver the proton beam, 

• the KF-CCS equipment management domain; in which 
KF-CCS electronics technicians concern themselves with 
maintaining the equipment related to the KF-CCS opera­
tion, 

• the KF-CCS implementation domain; in which KF-CCS 
Managers, Analysts, Designers and Programmers concern 
themselves with the construction of software according to 
specifications deduced from the above domains. 

Clearly there are relationships between these domains. The last 
2 domains are solution domains for problems arising in the first 
2 domains, but not vica versa; that is, in trying to implement the 
required behavior of K.AON Factory beam transport devices, 
when delivering beam, it is easiest to employ lntellige nt control 
system technology to control relatively rm-intelligent, passive 
beam transport devices. 

We noted earlier that the requirements for the KF-CCS could 
have been derived by performing a systems analysis on a relevant 
K.AON Factory domain model, had it been available. Similarly, 
the requirements for the KF-CCS Implementation could be 
derived by performing: 

• a domain analysis of control systems implementation tech­
nologies, followed by 

• a system analysis of the domain to highlight the separation 
of control system functions between available hardware 
and software. 

The latte.r analysis was performed during the 1989 K.AON Fae, 
tory study for hardware costing purposes, while the former 
analysis is presently underway. 

VII. CONTROL SYSTEMS IMPLEMENTATION DOMAIN 
Control systems experts are well aware of their domain of 

expertise. Figure 5 shows an (incomplete) EERD of a traditional, 
generic central controls system implementation domain, high­
lighting the major entities in the domain and some of the relation­
ships between them. A short explanation of the EERD follows 
with the entities capitalized for ease of reference the first time 
they are referred to. 

All working DESIGNERs and PROGRAMMERs use 
WORKST A TIONs to create the source classes from the CON-
1ROL SYSTEM SPECIFICATION. The implementation lan­
guage, represented by COMPILER, is object-oriented, 
supporting the separate compilation of SOURCE CLASSes that 
are then linked intoan EXECUTABLE IMAGE by the LINKER. 

The executable images are run within TASKs by a CPU in a 
PROCESSOR MODULE. They communicate with each using 
ITCs (inter-task communication links). if on the same processor, 
and LAN LINKs if on different processors. 

:Each beam transport and beam diagnostic DEVICE is inter­
faced to the processors by a single DEVICE I/O MODULE 
placed in a VME CR.A TE 

Processors have 2 types of storage: CPU MEMORY inside 
the processor and disks mounted in DISK MODULEs. The 
fonner provides volatile storage that is lost whenever power 
fails, the processor fails, the processor is removed etc., while the 
latter provides persistent storage that survives such an occurren­
ces. 

I 
I 

/ 
I 

I 

Fig. 4 The Object Interaction Diagram for Fig. 1. This domain model 
shows the entities in the domain as circles. Heavy, directed lines are 
energy flows while thin-solid and dashed lines me information flows, 

VIII. MAPPING 
The CON'IROL SYSTEM SPECIFICATION entity (top 

right of Fig. 5) is a model of a control system to be buill To 
simplify discussions we will postulate this to be fully described 
by only one model type, namely an Object Communication 
Diagram (OCD); Fig. 2 for example. The OCD is, in tum, 
composed of: 

• a set of SYSTEM-OBJECT MODELs, 
• a set of SYSTEM TERMINATOR MODELs, and 
• a set of all INTER-OBJECT FLOW MODELs describing 

information flows between System Objects and between 
System Objects and Terminator Objects. 

In addition, each SYSTEM-OBJECT MODEL describes: 
• the INTRA-OBJECT FLOWs accepted by the object, 
• the PROCESSes required to convert input flows to output 

flows and 
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nQl'fllal . 
relationships 

Relationship DUigram of a traditional controls system implementation domain. Entities in the domain 
describes the type of relationships between entities. 

• the information needed be STOREd to satisfy the 
PROCESSes. 

Each of the above models is a description of a particular type 
of need that entities in the implementation domain must fulfil. 
That is, we must find entities in the implementation domain that 
are capable of as required by the models. This 
association of a model with rui implementation entity is termed 
ma1wtmt. Perfonning a mapping (i.e. translating) is similar to 
compiling the description of an algorithm, in a high level lan­
guage, into an equivalent in an assembler language. 
The latter could , in tum, be assembled, linked and executed. 

To illustrate the notion of mapping we will consider the 
various ways of implementing a CONTROL SYSTEM 
SPECIFICATION using our suite of implementation entities 
(Fig. 5). 

When all system-object PROCESSes are of the discrete 
variety and we are using a traditional processor, we can map 
{denoted by the"-->" symbol) these models as follows: 

• both typ...s of "flows" ·-> the MESSAGEs accepted by a 
SOURCE CLASS, 

• "processes" -·> the METHODs of a SOURCE CLASS (a 
named-method is invoked by the class receiving a message 
with the same name), and 

• "stores"--> the INSTANCE VARIABLES of a SOURCE 
CLASS, 

• ft system-object model" -> SOURCE CLASS, 

'i09 

,. "control system specification" --:>APPLICATION, and 
• "terminators" --> DEVICE IIO MODULEs. 

This mapping implies: 
• the control system software is a single application pro. 

gram, 
• that it deals with events in the real world sequentially, and 
• that all tenninator modules must be in the same VIVi.E 

crate. 
In a large control system this latter implication is unaccep­

table. The distributed nature and quantity of terminators will 
require a large number of terminatar IIO modules in several 
VME crates to interface them to the application software. A local 
processor will also be required in each crate to access the J/O 
modules in that crate. The relevant application software must 
also be running in that processor. 

From the OCD of Fig. 2 one can see that the simplest choice 
of application software to be run in a particular processor must 
correspond to the system-objects for the tenninators interfaced 
into that crate. Flows between each terminator and the processor 
would then occur within the single crate. 

With this choice of allocating system-objects to processors 
the original single program now becomes fractured into several 
programs. Now flows between these distributed system-objects 
cannot all be mapped to messages; those between objects on 
different processors must be mapped to LAN LINKS. 
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Now consider the changes required when some PROCESSes 
are CONTINUOUS TRANSFORMs. As these processes must 
be able to proceed independently they must be mapped to 
TASKs. In addition the INTRA-OBJECT FLOWs to these 
processes must be mapped to ITCs (inter-task communication 
channels). Now a single system-object may be distributed across 
several tasks, and there is no reason for these tasks to reside on 
a single processor. If a system-object is fractured across proces· 
sors then its INTER- and INIRA·OBJECT FLOWS must be 
mapped to ITCs and LAN LINKs. 

IX. PERFORMING AND EVALUATING THE MAP 
Given an application program, implemented as a set of tradi­

tional communicating programs running on a set of processors, 
there are many reasons for selecting a particular arrangement of 
programs to processors. Criteria such as: 

• access to critical resources e.g. particular 1/0 modules, 
• communications volume to and from critical resources, 
• response times to events, 
• meeting deadlines (in hard real-time systems), 
• computational "volume" per mode of operation, 
• computational "volume" per event, 
• processor~s capability, capacity and reliability, 
• storage capability, capacity and reliability, 
• network capability, capacity and reliability, 

play important roles in determining the positioning of programs, 
regardless of operating system and languase issues. 

The mapping process, described above, leads ultimately to 
the allocation of parts of SYSTEM-OBJECTs to multiple (sub­
application) programs. To simplify the establishment of this 
mapping, initially, we have studied the case in which: 

• system-objects were not fractured smaller than individual 
PROCESSes, and 

• all PROCESSes communicating with a terminator via its 
IIO module were allocated to processors in the same crate. 

The number of application program fragments to distribute is 
then large but finite. We are presently investigating an algorithm 
that would produce a "best" arrangement of programs among 
processors by minimizing a "quality factor". The "quality factor" 
depends on the values of all of the properties listed above. These 
values will all be available from a control system implementa­
tion-domain model presently being completed for the KAON 
Factory. 

The simple mapping model presented here has difficulties 
accounting for certain properties required by some systems - for 
instance "fault tolerance". In a fault-tolerant system one would 
require copies of a program to execute on different processors -
a feature that would increase the amount communications over 
a solution in which all copies were allocated to the same proces­
sor. The role ofa processors "reliability" property in the "quality 
factor" must be, therefore, to "repel" copies of like software. 
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X. CONCLUSIONS 
The possibility of generating a mapping directly from a 

control system specification now seems feasible. It relies upon: 
• detailed domain and system models of the control system 

implementation architecture (e.g. Fig. 5) and either 
• a detailed mapping scheme that captures the experience of 

control system designers, or 
• a calculable figure of merit associated with each mapping 

that could be minimized, say, to produce the "best" design. 
Commercial code generator products have been available for 

several years that are capable of creating executable systems 
directly from structured designs. They are feasible because the 
commercial computing domain is very mature and code gener­
ators tend to work with mainstream transaction management 
products for which all interface software is provided. 

It is timely to pursue the goal of developing control systems 
at a higher "level" of abstraction. There are many benefits to be 
gained by leaving the "technical details" to a new form of 
"compiler" in much the same way as assemble: programs were 
replaced by high level language programs. The final products 
will be more uniform in design and more adaptable to technology 
changes by "re-compilation". Future control system develop­
ment work at TRIUMF in support of the KAON Factory will be 
directed toward developing such a "control system compiler". 
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