3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

A Simplified Approach to Control System Specification and Design
Using Domain Medelling and Mapping.

G.A. Ludgate
TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3, Canada

Abstract

Recent developments in the field of accelerator-domain and
computer-domain modelling have led to a betier understanding
of the "arnt" of control system specification and design. It now
appears possible to "compile” a control system specification to
produce the architectoral design, The informaticn required by
the "compiler” is discussed and one hardware optimization algo-
rithm presented, The desired characteristics of the hardware and
software components of a disiributed control system architecture
are discuszed and the shortcomings of some commercial
products,

1 INTRODUCTICON

Inrecent years more emphasis has been placed on the gather-
ing and validating of requirements for automated control systems
before they are built [1, 2, 3, 4, 5). Our earlier work reporied on
the specification of the XACON Factory Central Contrel System
(KF-CCS), using two emerging techniques in the application of
chiect-oriented principles to requirements specificstion namely:
domain driven modelling [2] and dynamic object modelling [3].
A re-examination of the problems encouniered using these two
contemporary {cchniques has led to 2 better understanding of
both the use of domains in creating and structuring a system
specification and of the design-processes used to transform the
system specificaticn into exccutable code,

It now seems possible to "compile” a coniral system from its
specification form., As with all "compilers” the "target language”
(usuaily a micro-processor machine cede) must be exacdly
described before the "compiler” can be created, With contem-
porary domain modelling appreaches we row have the power to
construct such a complete description of the active elements that
form control systems and to determing an appropriate strategy
for "compilation”,

II. PROBLEMS WITH EARLIER APPROACHES
Dynamic cbject medelling [3] advecates, from the outset, the
determination of the context of a system-fo-be-built and its
preseniation in the form of a Ceatext Diagram (Fig, 1). A
Context Dizgram follows from an analysis of & problem, the
specification of a scluticn and the desire to implement the
soluticn as an antcmated system. This approach leads 0 an early
identificaticn of externat devices (Terminator Chjects) that are
to be interfaced to and controlied by the system. Only informa-
tion flows betwesn the system and the Terminator Objects are
shown on a Context Diagram.The single bubble represents the

system-to-be-built; boxes represent Terminator Objects.

Object Oriented Programming & Techniques

h

The internal structure of the system-to-be-built, termed the
Object Communication Diagram, is comprised of both the static
and dynamic system-objects in the solution, Figure 2 shows an
example internal structure for Fig. 1. Static objects are repre-
sentation of conceptual entities in the soludon (e.g. schedules,
lists etc.) while each dynamic object represents the dynamic
behavior of its associated Termingtor Object, as seen through
their mutual interface (the information flows between the
dynamic object and the Terminator Cbject).

Master Timing

System
Settings

7]

Values} io%
B 219
(5] se) B 18]
KF-CCS 5
Y o
Values O

Values

Seﬂings Sgnfngs
RF Magnet
Fig. 1 A simplified Context Diagram of the KF-CCS. The single bub-

ble repzesents the system-to-be-built; boxes represent Terminator Ob-
jects.,

Settings
Diagnostic

During the K AON Factory Study the premature focussing on
KF-CCS systems-analysis [3] led to some difficulties with users
and reviewers appreciating the role of the (predominantly
software based) KF-CCS in the much larger context of control-
ling KAON Factory beam production, and the affect of interac-
tions between its Terminator Objects, A Super-Context Diagram
was therefore created 1o show the "bigger picture” (Fig. 3). In
the KAON Faclory, interactions between Terminator Objects
will be due, for example, to the Master Timing System that will
determine (predominantly in hardware) the exact timing of all
beam related events e.g. beam transfers between any of the 5
rings.

Domain driven modelling (2], on the other hand, does not
require this premature move into systems-analysis, In the early

S1400P02
505

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

phases of KF-CCS planning a more general form of modelling
would have been extremely helpful in understanding the opera-
tion of the KAON Factory. With this knowledge in hand, one or

Master Timing
System

Operator

HF Magnet Diagostic

Fig. 2 The Object Communication Diagram for Fig. 1 (inside the bub-
ble) represents the composition of the KF-CCS in terms of system-ob-
jects and the information flows between them and the external
Terminator Objects.

more systems analyses could have been performed to ascertain
the suitability of automating various tasks as pari of the KF-CCS.

Models that allow the precise descripton of what is required
tobe eccomplished in a particular field of interest and when, but
regardless of kow it is to be carried out, are termed domain
models, A complete KAON Factory domain medel would show
the desired behavior of the KAON Factory regardless of whether
control systems had been construcied to achieve the behavior or
whether the devices naturally embodied the required behavior.
To preciszly define the nature of domain models and their use in
control system building, a brief introduction to domains follows.

111, BOMAINS

One way humans organize their knowledge of the world is in
terms of domains e.g. the domains of banking, physics, art, law,
etc, A domain serves as a context within which technical terms
and expressions usually have a single meaning; for instance, the
expression "The grounds ore fine." has completely different
meanings in the domains of electronics, gardening, debating and
coffee making. The term "domain specific langnage™ highlights
this re-use of old words, with new meanings, as an appropriate
manner of describing a domain.

Domains can include other domains (e.g. divorce laws are
part of all laws), can overlap other domains or be completely
independent of each other. The contents of a domain are deter-
mined by a set of criteria termed Domain Criteria, It is implicitly
understood that the criteria for common-place domains are

S1400P02
506

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

known to most people. Thus, for example, no-one would con-
sider "Magnets" as being part of "Banking".

We can capture the essential details of a domain by making
models, These models take many different forms, for example:
= written text, for qualitative domains like medicine, or

« written text with embedded mathematical formulag, for

quantitative domains like physics.

These models usually describe a domain in terms of five
important types of knowledge, namely:

« concepts used by expens working within that domain,

« facts about the individual concepts,
facts relating two Of more concepts,
interactions that occur, and
events and conditions that cause interactions within the
domain,

This time honoured approach to describing domains, in terms
of the "things" that experts believe are part of the domain and
the relationships between them, has recently been called "the
object-oriented approach™ by designers and builders of software
systems. The object-oriented approach has been gathering sub-
stantial support from vendors and builders alike in recent years
due to its uniform manner of modelling both problems and

Mastar Timing
System

T

|
I
|
i

agnet | |Diagnostic |

lonization J

Fig. 3 The Super-Context Diagram of Fig.1 illustrates the "fit" of the
KF-CCS into its immediate environment.

solutions, and the availability of languages that support
"software objects”. The support has been a "grass roots” move-
ment, arising initially from an understanding of the benefits
accrued by using object-criented programming languages on a
project; and later expanding to encompass the earlier analysis
and design modelling phases of a software project.

1V. DOMAIN BASED MODELLING

One can "view" domain based modelling as being one more
step down the historical path of increasingly structuring systems

Object Oriented Programming & Techniques

506

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

during their construction. Originally, coding was performed in
machine code; later in assembler and today in FORTRANlike
languages; structured programming, struciurcd design, cbiecis
and applications were more recenily created to manage the
complexity of large software systems.

A more gereral understanding of ithis stzucturing can be
obtained by "viewing” it as successful atiempis at constrocting
new domains with asscciated domain specific languages, The
elements of each new dcmain were abstractions of useful fea-
tures from older domains; thus Structured Design highlighted the
composition of prograsms from grocedures calling other proce-
durgs and passing daia/conirol couples. Its approach was lan-
guage independent in that it abstrected away the details of any
procedure’s implementation but maintained the usefulness of
being able o consider groups of statements as producing definite
results from given inputs.

All traditional 2nd most contemporary, commercially avail-
able chjcct-oriented development methodologies and languages
are presently not domain based in that they do not recognise the
existence of domains and their Domair Criteria. In solving a
particular problem it is, therefore, possible o incorporate any
object what-so-ever into the solution domain. It would strike
most of us as being unusual if 2 "Banking” system specification
required "Magnets” but it dees not seem unlikely that a "Control
System” specification should require "VME",

Both of these examples violaie the basic structuring tenet of
any domain driven methodology that attempts to prevent the
mixzing of elements of a given problem (the problem domain)
with elements of g particular solution (the sclution domain).

Most control systems builders support this domain-driven
development heuristic but express it in terms of "layered”
designs for conivol systems - a layer’s contents, ideally, being
modifiable without affecting adjacent layers [6,7]. In such
"good” designs, elements from one layer do not appear in other
layers e.g. nedwork links inside the user inferface layer,

kodelling in a scientific domain has often led to 8 formal
mathematical representation of the relaticnships between the
important concepts in the domain but to a completely informal
treatment of the 4 other types of knowledge. Physics is a prime
example of this medelling approach.

The object-oriented approach to medelling in a domain secks
to redress this imbalance and reduce the emphasis on relation-
ships. To achieve this goal, object-oriented domain analysis
embcdies & nomber of model-types that are vnfamiliar (o

physicists and 0 most builders of automated systems, The
models-types that capture the five types of knowledge, cited
above, are;

» Extended Entity Relationship Diagrams (EERD); to
madel the entities and concepts in 2 domain, their proper-
ties and the relationships between them,

= State Transition Diagrams (§TD); to model the medes of
behavior of each entity and the causes of transitions be-
tween the modes,

¢« Object Structure Diagrams (OSDY); to model the processes
inherent in each entity and how these effect entity proper-
ties and behavior,

Object Oriented Programming & Techniques

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

o Object Interaction Diagrams (CID); o madel the causal
relationships between the entities.
Domain models are, therefore, models of an entire field of
knowledge in the same way that "PV=nRT" is a physicist's
medel of an Ideal Gas (2 model which conld be incorporated into
an object-oriented domain model of Ideal Gaszs ag "viewed" by
physicists).
Domain models can only be validated by:
 experimenting with physical entities in the domain (c.g.
RF cavities and Magnets for KAON), or
= questicning domain-experis about conceptual entities in
the domain (e.g. 2 Beam Schedule, Startup Seqeence),
and comparing the results with predictions from the domain
models. In like manner the completeness of domain medels can
only be established by consulting a domain expert; but once the
domain medals are desmed complete and valid they can serve
as a re-usable resource for projects undertaking the antomation
of activides in the domain. Domain models serve as the only
criteria against which the "correctness”™ of any automation
project is established.

V. MODELLING N A DOMAIN

To manage the complexity of modelling in a given domain
an observer should represent the domain from a particular view-
point. Those features ihat the cbserver deems essendal to the
viewpoint must be included in the models while all other ir-
relevant features are omitted, The resulting model is a particular
abstract view of the domain. The most important viewpoints of
a domain, termed the Canonical Domain Views, are those of the
different types of people working in the domain.

The domains relevant to the builders of the KF-CCS were
most easily identified from an analysis of all personnel that will
be involved in the preduction of the 30 GeV proton beams [3].
As personnel are frequently assigned multiple jobs, the study
focussed on eliciting the roles to be played by those personnel in
prodocing beam, The view of the ILAON Factory perceived by
any person acting out a particular role defines a description of
some relevant (canonical) domain. As several roles often share
2 common or similar view of the KACON Factery it follows that
the numbecr of Cancnical Domain Views is limited by the number
of roles identified.

An exampls KAON Factory beam-delivery domain-moedel
(Fig, 4) clearly shows the Master Timing System (MTS), its
interaction with each beamline device and with an Operator.
Personnel assuming the latter role use the MTS to tune the beam
in the synchrotrons after all beamline devices have been turned
on. Unlike in Fig, 1, this simple domain model does not distin.
guish between those functions carried out by hardware or
software, and corresponds 1o the way Beam Physicists describe
the operation of the XAON Factory.

A complete model of the domgain, formed from a union of the
Canonical Domain Views, is termed the Canonical Domain
Model.

S1400P02
507

ST

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

VI, CANONICAL DOMAINS RELEVANT TO
CONTROL SYSTEM BUILDERS

In the KAON Factory domain, which is concemed with
delivering a 100 microampere proton beam to 30 GeV, the
different types of personnel involved [3] have been used w
identify several canonical domains, for example:

the beam-delivery domain; in which KAON Factory
Operators and Beam Physicists concern themselves with
producing an optimum 30 GeV proton beam and gaining
an understanding of the synchrotrons,

= the equipment management domain; in which Equipment
Specialists concern themselves with monitoring and con-
trolling devices required to deliver the proton beam,

« the KF-CCS equipment management domain; in which
KF-CCS elecironics technicians concern themselves with
maintaining the equipment related to the KF-CCS opera-
tion,

« the KF-CCS implementation domain; in which KF-CC$
Managers, Analysts, Designers and Programmers concern
themselves with the construction of software according to
specifications deduced from the above domains.

Clearly there are relationships between these domains. The last
2 domains are solution domains for problems arising in the first
2 domains, but not vica versa; that is, in trying to implement the
reguired behavior of KAON Factory beam (ransport devices,
when delivering beam, it is easiest to employ intelligent control
system Lechnology to control relatively un-intelligent, passive
beam transport devices.

‘We noted carlier that the requirements for the KF-CCS could
have been derived by performing a systems analysis on a relevant
KAON Factory domain model, had it been available, Similarly,
the requirements for the KF-CCS ilmplementation could be
derived by performing:

= adomain analysis of control systems implementation tech-
nologies, followed by

* asystem analysis of the domain to highlight the separation
of control system functions between available hardware
and software,

The latier analysis was performed during the 1989 KAON Fac-
tory study for hardware costing purposes, while the former
analysis is presently underway.

VII, CONTROL SYSTEMS IMPLEMENTATION DOMAIN
Control systems experts are well aware of their domain of
expertise. Figure 5 shows an (incomplete) EERD of a traditional,
generic central controls system implementation domain, high-
lighting the major entities in the domain and some of the relation-
ships between them. A short explanation of the EERD follows
with the entities capitalized for ease of reference the first time
they are referred (0.

All working DESIGNERs and PROGRAMMERs use
WORKSTATIONS to create the source classes from the CON-
TROL SYSTEM SPECIFICATION, The implementation lan-
guage, represented by COMPILER, is object-oriented,
supporting the separate compilation of SOURCE CLASSes that
are then linked intoan EXECUTABLE IMAGE by the LINKER.

S1400P02
508

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

The executable images are run within TASKs by a CPU in a
PROCESSOR MODULE, They communicate with each using
ITCs (inter-task communication links), if on the same processor,
and LAN LINKs if on different processors.

Each beam transport and beam diagnostic DEVICE is inter-
faced to the processors by a single DEVICE I/O MODULE
placed in a VME CRATE

Processors have 2 types of storage: CPU MEMORY inside
the processor and disks mounted in DISK MODULEs. The
former provides volatile storage that is lost whenever power
fails, the processor fails, the precessor is removed etc., while the
latter provides persistent storage that survives such an occurren-
ces.

Fig. 4 The Object Interaction Diagram for Fig. 1. This domain model
shows the entities in the domain as circles. Heavy, directed lines are
energy flows while thin-solid and dashed lines are informatien flows.

VIII. MAPPING
The CONTROL SYSTEM SPECIFICATION entity (top
right of Fig. 5) is a model of a control system to be built. To
simplify discussions we will postulate this to be fully described
by only one model type, namely an Object Communication
Diagram (QOCD); Fig. 2 for example, The CCD is, in turn,
composed of:
» asetof SYSTEM-OBJECT MODELs,
» asetof SYSTEM TERMINATOR MODELS, and
o asetof all INTER-OBJECT FLOW MODELSs describing
information flows between System Objects and between
System Objects and Terminator Objects.
In addition, each SYSTEM-OBJECT MODEL describes:
=+ the INTRA-OBJECT FLOWSs accepted by the object,
 the PROCESSes required to convert input flows to output
flows and

Object Oriented Programming & Techniques

SNKR

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7

ISSN: 2226-0358

Dk Medule

T of mistionehl

P N Grrposod

=" S Snetics
[hesigrer] [Programmer}
cremted
Apgiitahon i _Edior |

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

Control Syelam

K——Hﬂa Transtion Ciecraie Continuous
Trenalorm Translom

Transition Condition ! Trangition Action l

Fig. 5 An (incomplete) Exiended Entity Relationship Diagram of a traditional controls system implementation domain. Entities in the domain
are represented by boxes, A legend describes the type of relationships betwesn entities,

= the information needed be STOREd 1o satisfy the
PROCESSes.

Each of the sbove models is a description of a particular type
of meed that entities in the implementation domain must fulfil.
That is, we must find entities in the implementation domain that
are capable of performing as required by the models. This
association of a model with an implementation entity is termed
mapping. Performing a mapping (i.e. translating) is similar 1o
compiling the description of an algorithm, in a high level lan-
guage, into an equivalent description in an assembler language.
The Iaiter could , in tum, be assembled, linked and exccuted.

To illustrate the notion of mapping we will consider the
verious ways of implementing a CONTROL SYSTEM
SPECIFICATION using our suite of implementation entities
(Fig. 5).

When all system-object PRCCESSes are of the discretz
variety and we are using a traditional processor, we can map
(denoled by the "-->" symbol) these models as follows:

o both typss of "flows" --> the MESSAGEs sccepted by a

SOURCE CLASS,

« "processes” --> the METHODs of a SOURCE CLASS (a
named-method is invoked by the class receiving a message
with the same name), and

o "stcres” --> the INSTAMNCE VARIABLES of a SOURCE
CLASS,

= "system-object model” > SOURCE CLASS,

Object Oriented Programming & Techniques

M0

« "control system specification” --»> APPLICATICN, and

= “fzrminators® --> DEVICE 10 MODULESs.
This mapping implies:

» the control system software is a single application pro-

gram,

» that it deals with events in the real world sequentially, and

= that all terminator /0 modules must be in the same YME

crate.

In a large control system this latter implication is unaccep-
table. The distributed nature and guantity of terminators will
require a large number of terminater 1/0 modules in several
VME crates o interface them to the application software. A local
processor will also be required in each crate to access the YO
modules in that crate. The relevant application software must
also be running in that processor.

From the GCD of Fig. 2 one can see that the simplest choice
of application sofiware (o be mun in a particular processor must
correspond (o the system-objects for the terminators interfaced
into that crate. Flows betwegn each terminator and the processor
would then cccur within the single crate.

With this choice of allocating systam-objects to processors
the criginal single program now becomes fractured into several
programs, Now flows between these distributed system-objects
cannot all be mapped to messages; those between objects on
different precessors must be mapped to LAMN LINKS.

S1400P02
509

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

Mow consider the changes required when some PROCESSes
are CONTINUOQOUS TRANSFORMSs. As these processes must
be able to proceed independently they must be mapped to
TASKs. In addition the INTRA-OBJECT FLOWs to these
processes must be mapped to ITCs (inter-task communication
channels). Now a single system-object may be distributed across
several tasks, and there is no reason for these tasks to resids on
a single processor, If a system-object is fractured across proces-
sors then its INTER- and INTRA-OBJECT FLOWS must be
mapped to ITCs and LAN LINKs.

IX. PERFORMING AND EVALUATING THE MAP

Given an application program, implemented as a set of tradi-
tional communicating programs running on a set of processors,
there are many reasons for selecting a particular arrangement of
pmgrams to processors, Criteria such as:

access to critical resources e.g. particular I/O modules,

» communications volume to and from critical resources,

* response times to events,

¢ meeting deadlines (in hard real-time systems),

= computational "volume” per mode of operation,

* computational "volume" per event,

» processor’s capability, capacity and reliability,

¢ storage capability, capacity and reliability,

= network capability, capacity and reliability,
play importantroles in determining the positioning of programs,
regardless of operating system and language issues.

The mapping process, described above, leads ultimately to
the allocation of parts of SYSTEM-OBJECTS to multiple (sub-
application) programs, To simplify the establishment of this
mapping, initially, we have studied the case in which:

= System-objects were not fractured smaller than individual

PROCESSes, and
« all PROCESSes communicating with a terminator via its
1/0 module were allccated to processors in the same crate.
The number of application program fragments to distribute is
then large but finite. We arc presently investigating an algorithm
that would produce a "best” arrangement of programs among
processors by minimizing a "quality factor”. The "quality factor"
depends on the values of all of the properties listed above. These
values will all be available from a control system implementa-
tion-domain model presently being completed for the KAON
Factory.

The simple mapping model presented here has difficulties
sccounting for certain properties required by some systems - for
instance "fault tolerance”. In a fault-tolerant system one would
require copies of a program !o execute on different processors -
a feature that would increase the amount communications over
a solution in which all copies were allocated to the same proces-
sor. The role of a processors "reliability” property in the "quality
factor” must be, therefore, w "repel” copies of like software.

S1400P02
510

510

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S1400P02

X. CONCLUSIONS

The possibility of generating a mapping directly from a
control system specification now seems feasible, It relies upon:

o detailed domain and system models of the control system

implementation architecture {e.g. Fig. 5) and either

o adetailed mapping scheme that captures the experience of

control system designers, or

= acalculable figure of merit associated with each mapping

that could be minimized, say, to produce the "best” design,

Commercial code generator products have been available for
several years that are capable of creating executable systems
directly from structured designs. They are feasible becanse the
commercial computing domain is very mature and code gener-
ators tend to work with mainstream transaction management
products for which all interface software is provided.

It is dmely to pursue the goal of developing control systems
at a higher "level” of abstraction, There are many benefits to be
gained by leaving the "technical deiails” to a new form of
"compiler” in much the same way as assembler programs were
replaced by high level language programs. The final products
will be more uniform in design and more adaptable to technology
changes by "re-compilation”. Future control system develop-
ment work at TRIUMF in support of the KAON Factory will be
directed toward developing such a "control system compiler”.

XI. REFERENCES

[1] D.A. Dohan, G.A. Ludgate, E.A. Osberg, S. Koscielnizk and C.
Inwood, "Definition study of the TRIUMF KAON Festory control
system project”, Proceedings ICALEPCS '89, Nucl, Instr. end
Meth. A293 (1990) 6-11.

[2] C.Inwood, G.A. Ludgate, D.A. Dohan, E.A, Osberg and 5. Kosciel-
niek, "Domain-driven specificationtechniques simplify the analysis
of requirements for the KAON Factory cenwal control system”,
Proceedings ICALEPCS *89, Nucl. Insir. end Meth. A293 (1990)
3%0-393.

[3] E.A. Osberg, G.A. Ludgate, S. Koscielniak, D.A, Dohen and C.

* Inwood, "Dynamic object modelling as applied to the KAON
comtrol system”, Proceedings ICALEPCS '89, Nucl. Instr, and
Meth. A293 (1950) 394-401.

[4] J-L. Theron, " Design and checking of a large Ada real-time system”,
Proceedings ICALEPCS '89, Nucl, Instr. and Meth. A293 (1990)
373-376.

[5] G. Morpurge, "SASD and the CERN Run-time coordinator”,
Proceedings ICALEPCS '89, Nucl. Insir. and Meth. A293 (1950)
385-389.

[6]1B. Kuiper, "Accelerator controls atCERN some converging irends”,
Procesdings ICALEPCS '89, Nucl, Insir. and Meth. A293 (1990)
308.315.

[7] P. Clout and A Deneels, "Report of the Los Alamos eccelerator
automationapplication toolkit workshap”, Proceedings ICALEPCS
'89, Nucl. Instr, and Meth. A293 (1990) 321-324,

Object Oriented Programming & Techniques

