
A VMEbus General-Purpose Data Acquisition System 

A. Nina.ne, M. Nemry, J.L. Ma.rtou and F. Somers 
Institut de Physique Nucleaire, Uni11ersite Catholique de Lou11ain 

Ch. du Cyclotron, 2 - B-1348 Lou11ain-la-Neu11e1 Belgium 

November 8, 1991 

Abatract - We present a general-purpose, VMEbus 
based, multiproceBSor data acquisition and monitoring 
system. Events, handled by a master CPU, are kept at 
the disposal of data storage and monitoring processes 
which can run on distinct processors. They access ei­
ther the complete set of data or a fraction of them, 
minimising the acquisition dead-time. The system is 
built with the VxWorks 11.0 real time kernel to which 
we have added device drivers for data acquisition and 
monitoring. 

The acquisltion is controlled and the data are dis­
played on a workstation. The user interface is writ­
ten in c++ and re-uses the c:laases of the Interviews 
and the NIH libraries. The communication between 
the control workstation and the VMEbus processors is 
made through SUN RPCs on an Ethernet link. 

The system will be used for, CAMAC based, data 
acquisition for nuclear physics experiments as well as 
for the VXI data taking with the 4?1' configuration 
(100 neutron detectors) of the BruBBels-Caen-Louvain­
Strasbourg DEMON collaboration. 

I. INTRODUCTION 

Experiments differ in the way they produce data: they 
use different standards of hardware to digitize data (VHE, 
VXI, CAMAC1 ••• ); they generate data varying in byte length 
and counting rate. However, the last stages of data acqui­
sition systems have many things in common: the data are 
analyzed on-line to control the experiment and are written 
on storage devices for further off-line analysis. 

We have defined a common framework for a general­
purpose data acquisition system. It meets the following 
requirements: 
- the data source is open: the system can be enabled to 

acquire data from various instrumentation buses; 
- the data sink is open: data can be analyzed on-line by 

concurrent processes and can be stored on different 
types of mass storage devices; 

• the system is scalable: it can be used for low count rate 
nuclear physics experiments (20 byte events at 200 Hz) 
as well as in larger experiments such as the 100 neu­
tron detectors of the DEMOll' collaboration [1] (300 byte 
events at 5 kHZ); 

- the user sits at the highest level of the data acquisition 
system with the modern conveniences of workstations. 

II. SYSTEM ARCHITECTURE 

A. Distributed Hardware 

The system is designed following a distributed architec­
ture (Figure 1). The real-time data acquisition is per­
formed by a VMEbus system. It allows to connect a wide 
variety of interfaces to external hardware as well as to 
run data acquisition processes by various processor boards. 
The user acquisition control and data handling is delegated 
to a standard workstation connected to the VHEbus system 
by an Ethernet link. 

E 
T 
H 
E 
R 
N 
E 
T 

From Detectors & Exp. Area 

A A 'l' 
D D D 
c c c 

K K Ill 
vvv 
KM M 
& & & 

1 1 1 
4 4 4 
7 7 7 

Digital Em;;oders 

CAMACBUS 

r r 
z z 
c c 

• • 2 2 
3 3 
0 0 

VMEbus 

:~~:1~~~@~~~~)tl~~~~m~~~)t~~~~·· I UNIX System 11-, .. 

:~~;~~~~~~ii~~~w~~~:1~*:~Jt~~~~~l1:~~~t 

c 
B 
D 

I 
2 
1 
0 

Figure 1: A Simple Distributed Architecture 

c 
A 
M 
A 
c 
B 
R 
A 
N 
c 
H 

In such an architecture, both parts are loosely coupled 
and may be evolved on their own. The UBer workstation or 
the VHEbua system may be replaced or upgraded without 
redesigning the entire system. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA05

System Architecture

S06SA05

265

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



B. Software Architecture 

Even.ta are defined as a set of structured and correlated 
data which enter the system at random by interrupts. 
Events1 are assembled into larger, configurable, structures 
called bloclu. 

A number of tasks can be implemented in the system 
to read data simultaneously from data chan.n.ela. A chan­
nel is characterized by an acceBB mode: 'full or sample. 
Tasks accessing data through a 'full-mode channel read 
and process all the data blocks. They can therefore lead 
to a considerable increase in the system dead-time. The in­
fluence on the data proceBBing dead-time can be reduced by 
sample-mode channels which acceBB only a sample of the 
data at the task's own processing speed. A data storing 
process works in the 'full-mode, while the sample-mode 
suffices for data monitoring. A block type parameter can 
also be assigned to a data channel: read operation on the 
channel will return only blocks of events of this particu-
lar type. · 

The Buffer System 

The data acquisition system can be viewed as a prod-ucer 
task - the event's interrupts - and many con1umer tasks 
- the data analysis and storage - running concurrently to 
fill and consume blocks of events. The producer and the 
consumer tasks share a common buffer system. 

A buff er refers to a block of even ts. They are arranged in 
two doubly-linked lists (2] (Figure 2): the free list contains 
buffers that can be used directly by acquisition interrupts 
to store new events, while the valid list contains buffers 
already filled with events but not yet processed. Buffers 
can reside in both free and. valid lists. This situation occurs 
when they have been proceBSed by all 'full-mode channels 
but not by all sample-mode channels. 

1 8 

2 

Figure 2: The two doubly-linked lists 

Producer Part 

At the beginning of a data acquisition, all buffers reside 
in the free list. When the data acquisition process starts, 
a buffer is extracted from the head of the free list and 
becomes the c-urrent buffer. It is filled with events up to 
its maximum size. It inherits the identification of the data 
reading channels interested to process it and is added at 
the tail of the valid and/or the free lists. A new current 
buffer is extracted from the free list head and the procedure 
continues. 

lThe event definition ia not reatric:tive: an event can be CIJllC 
data of a .Ingle ph;yllical event but can abo be a blodc of data pre­
proc:eaaed or filtered by other proc:e•aon. 

266 

Consumer Part 

A data reading channel scans the valid list until it finds a 
new unprocessed buffer and returns the data to its parent 
task. When the operation is completed, the buffer is 
marked and is moved within the linked lists according to 
three situations: 

1. the buffer waits to be processed on another 'full-mode 
channel: nothing happens. It remains on the valid list 
and is safe from interrupts; 

2. the buffer waits to be proceBSed on sample-mode chan­
nels only: it remains on the valid list and returns at 
the tail of the free list; 

3. the buffer has been processed on every channel: it is re­
moved from the valid list and returned to the free list. 

If the acquisition produces data at a faster speed than 
the consumers process them, the free list will be emptiedj 
event interrupts are then disabled until a consumer proceBB 
returns a buffer to the free list. 

III. IMPLEMENTATION 

The ideas presented above have been implemented in a 
VKEbus system running the V:s:Works 5. O kernel. 

A. Hardware 

The VKEbue system consists of three Motorola KVKE147 
boards with KC68030 microprocessors. Each board has 
SCSI and Ethernet capabilities although they are not 
used on all of the boards. The system has been used 
so far with two different sources of data: CAKAC and 
FIC8230 preprocessor. 

CAMAC 

The CAKAC crate is connected to the VKEbus by the 
CES CBD8210 branch driver and the CCA2 crate controller. 
The module allows the generation of CAKAC CB'AF cycles 
as VKEbus memory mapped addresses. This elegant fea­
ture provides a fast access to the CAKAC bus and facilitates 
the software writing. The data acquisition system is inter­
rupted at each physical event by CAKAC LAKs. 

FIC Preprocessor 

The CES FIC8230 is a VKEbue board with a KC68020 
microproceBSor. It runs a fast, specifically developed, ker­
nel. The processor receives events from a CAKAC crate or 
from a DK.A. channel connected to local hardware. The mi­
croprocessor assembles events into blocks which are then 
written directly to the last stage of the data acquisition in 
a single interrupt. 

B. Acquisition Software 

To reach a high level of flexibility, the data acquisition 
system has been layered (Figure 3). The real-time kernel 
executes user tasks, which control the acquisition process 
and read the data through the kernel I/O system. At a 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA05

S06SA05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

266 System Architecture



Figure 3: Acquisition System Layering 

lower level, the data acquisition software itself has been 
structured in three layers: 

1. the aource independent layer comprises the data buffer 
system and its integration into the kernel I/0 system; 

2. the aource dependent layer implements routines to con­
nect the data source to the acquisition system; 

3. the uaer dependent layer implements routines to render 
the acquisition proceBB suitable to the user needs. 

Real-Time Kernel 

The VMEbus processors run the VxWorks 6. 0 real-time 
kernel. This software has been selected for its: 

- clear separation between system development and code 
management tasks - on a U?lIX system - and real­
time tasks - on VMEbus processor boards - which fits 
naturally in our distributed architecture; 

- platform independency on both sides: many U?lII plat­
forms and many VMEbus processors are supported; 

- high networking capabilities with IP family of standard 
protocols (TCP, UDP, RPC, IFS, ... ). 

The kernel provides all real-time primitives: sema­
phores, events, meBSage queues, control of preemption, 
priority-based scheduling, ... as well as the standard C 
library. It supports the notion of device driver which 
provides a common interface to devices or pseudo-devices 
through calls to the standard I/O C library. 

MultiproceBBor Extension 

The VxWorks 6. 0 is basically a single-proceBSor ker­
nel. To use the full power of the VMEbus system and 
to obtain the requested scalability, multiprocessor (MP) 
features have been added. The granularity of the MP­
architecture is situated at the task level. 

The system has a muter processor and many alave pro­
cessors. The master creates and owns the shared ressources 
while the slaves manipulate them. We have implemented 
MP-devices and MP-semaphores. 

267 

MP-devices : Device structure has been splitted into a pri­
vate and a shared part. The private part is the stan­
dard VxWorks device structure refered to the local I/O 
system. The local structure contains a reference to the 
shared part of the device. 

MP-semaphore: The MP-semaphore has been implemen­
ted with a shared flag protected by a apinlock varia­
ble [3]. The spinlock is accessed by indivisible 
cycle machine instructions to eliminate contentions. 
The MP-semaphore has a private, standard VxWorks, 
semaphore in each of the participating proceBSors. 
Tasks waiting for the MP-semaphore aleep on the 
private semaphore inside their proceBSor. A remote 
wakeup has been implemented with the help of the 
MVKE147 mailboxes. 

System drivers 

The data buffer system is accessed by two MP-device 
drivers integrated in the VxWorks I/O system. They reflect 
the producer-consumer relationship. 
1. /dev/acq: The acquisition device controls the pro­

duction of the data. ioctls are used for example to 
start and stop the acquisition by enabling and disa­
bling the interrupts in the master board. 

2. /dev/mon: The monitoring device implements the 
acce11 to the data. Tasks open this device to get a 
channel and read data. 

The lower part of the acquisition device driver is con­
nected to the data source by four routines: 
1. acqStartO: implements commands to initialize the 

source when starting an acquisition process; 
2. acqintrO: is executed at each event interrupt; 
3. acqRestart () : restarts the data source at the end of 

the event interrupt handling; 
4. acqStop () : executes commands to finish the data ac­

quisition proceBS. 

Each routine has an user defined part, which accesses 
the user modules participating in the data acquisition. 

Because of the VKEbus limitation of a single interrupt 
handler on a given level, the data acquisition proceBS can 
be executed only on a single proceBSor, the master, while 
the data processing tasks run on several slave processors. 

Network Servers 

The remote control and data analysis from an user work­
station .is executed by Remote Procedure Calla (RPCs) 
1erver1 running in the VKEbus system. 
- acqS erver: executes ioctls on the I dev I acq device to 

control the data taking; 
- monServer: controls the /dev/mon device to grant ae­

cess to channels for remote data reading tasks; 
- acqSysServer: supervises global parameters and pro­

cedures such as system directory, system reboot, ... 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA05

System Architecture

S06SA05

267

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



WDrkatatlon VMEbue 

tondatdRPC 

Open an acq. dala channel 
Open a TCP Poll --i 
Start a data Server _...1 

LDw lava! TCP 
aockel IJO 

Figure 4: RPC-Less Data Tranfer 

Because of their widespread acceptance, SUI 4.0 RPCs 
have been selected. To avoid retry problems, RPCs use 
the TCP/IP underlying transport protocol. The machine­
dependent data format problem, unavoidable in a hetero­
geneous distributed environment, is solved by the Ezternal 
Data Format (XDR) layer of the RPC protocol. 

The RPC mechanism is well suited to remotely control the 
system, but its layers introduce a time overhead that is too 
large to transfer a high rate of data. For this purpose, we 
are ueing a less ressource consuming protocol (Figure 4). 
The client contacts, with a standard RPC, the server to 
open a data channel on the acquisition side and a data 
communication port on the network side. A new specific 
data server, receiving both I/O descriptors, is created. The 
network port descriptor ie returned back to the client who 
can establish a {aster and reliable point-to-point connec­
tion (TCP/IP) to the data server to read events. 

C. User Level Tasks 

Users can run data processing tasks in the VKEbus 
system, they simply access the data through the moni­
toring device in the same way as for any other device. By 
this way the user can analyze data, build histograms, ... 
Data can aleo be copied to a disk or a tape cartridge in 
the VKEbus crate. 

Users may want to access the data directly from pro­
cesses running in their workstation. They can use a library 
o{ subroutines which takes care of the communication with 
the network servers in the VHEbus system. Users must pro­
vide four routines: 

1. monStart: begins a data monitoring task; 
2. processBlocll:: is executed for each block of events; 
3. men.Refresh: asynchronous user's request handling; 
4. monStop: completes the data analysis. 

Processes respond to the SIGHUP and SIGIIT signals. 
The SIGHUP handler executes asynchronously the routine 
mon.Retresh() to get intermediate results while the SIGIIT 
handler completes prematurely the data reading process. 

268 

A workstation process must indicate the VKEbus board 
and device it wante to read and the data channel mode. 
An example is the ddVME command (Figure 5), based on 
the well-known Ulll dd to copy data. 

I ddVJIE i1• .. •acq11:/deT/aDD. of-data.01 •Dde~ul.l count•20 
Wll%1lingl ob• •et to 1024 b7tea 
Connecting to 130.104.3.120(9973) ••• dDne 
PrDcesa 18478 atarted 
ddVllE: 40/0 blockll ---> 20 bloclta of 1024 bytes 
II.ate • 24980 bytea/s 
Process ddVXE terminated 

Figure 5: Example of a workstation task 

Workstation Interface 

An X Window interface helps the user to configure 
the VKEbus system and to control the acquisition pro­
cesses. The interface, written in the C++ language, uses 
the IIH-CL and InterVievs object libraries (4]. It imple­
ments Macintosh-like menus whose items are activated or 
deactivated according to the experiment current status. It 
uses dialogue boxes to get the data acquisition and moni­
toring parameters and to show their status. The main C++ 
class includes a method to dispatch user's requests and 
sends RPC requests to the VMEbus servers. 

The user interface is able to listen to the data acquisition 
system and transmit ite messages to the user. For that pur­
pose, we have modified the InterVievs events handler, 
making it sensitive to asynchronous messages from the 
VMEbus system. 

Conclusion 

We have developed a simple architecture for a data ac­
quisition system in which real-time data acquisition, moni­
toring tasks and system control have been loosely coupled. 
This provides the flexibility of the system. The syatem ie 
now fully integrated within our network of workstations 
and is used in experiments around the Louvain-la.-Neuve 
Cyclotron. 

References 

[l] G. Bi.Jllard, G. Coate., D. Durand, Y. El Masri, G. Guil­
laume, F. Hanappe, B. Heuach, A. Huck, M. Mouynalci1 J. Pe. 
ter and B. Ta.main: The Belgian-French Neutron Multidetector 
DEMON, Procuding1 on the International Conference on New 
Nuclear Phy1ic1 with Advanced Techniquea, Iearapetra, Crete, 
June 23-29, 1991 

[2] The data acquisition 1111tem and it& buffer ayatem ia inapired 
by the UNIX kemel and the buffer c~he, lee: M.J. Bach, The 
Deaign of the UNIX Operating S11atem, Prentice-Hall, 1986. 
[3] Lawrence M.Ruane, Procesa Synchroniution in the UTS 
Kernel, USENIX Computing Sy1tema, Vol 3, 1990. 
[4] M.Sibomana, Y. Longr~e, P.Mareachal, M. Nemry, 
A. Ninane and F.Somera, Direct Manipulation User Interfaces, 
in New Computing Techniquea in Ph111ic1 Ruearch, ~d. du 
CNRS, 1990, and references therein. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA05

S06SA05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

268 System Architecture


