3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JAColW-ICALEPCS1991-S06SAQS

A VMEbus General-Purpose Data Acquisition System

A. Ninane, M. Nemry, J.L. Martou and F. Somers
Institut de Physique Nucléaire, Université Catholique de Louvain
Ch. du Cyclotron, 2 — B-1848 Louvain-la-Neuve, Belgium

November 8, 1991

Abstract — We present a general-purpose, VMEbus
based, multiprocessor data acquisition and monitoring
system. Events, handled by a master CPU, are kept at
the disposal of data storage and monitoring processes
which can run on distinct processors. They access ei-
ther the complete set of data or a fraction of them,
minimizing the acquisition dead-time. The system is
built with the VxWorks 5.0 real time kernel to which
we have added device drivers for data acquisition and
monitoring.

The acquisition is controlled and the data are dis-
played on a workstation. The user interface is writ-
ten in C+-+ and re-uses the classes of the Interviews
and the NIH libraries. The communication between
the control workstation and the VMEbus processors is
made through SUN RPCs on an Ethernet link.

The system will be used for, CAMAC based, data
acquisition for nuclear physics experiments as well as
for the VXI data taking with the 4x confliguration
(100 neutron detectors) of the Brussels-Caen-Louvain-
Strasbourg DEMON collaboration.

I. INTRODUCTION

Experiments differ in the way they produce data: they
use different standards of hardware to digitize data (VME,
VXI, CAMAC,...); they generate data varying in byte length
and counting rate, However, the last stages of data acqui-
sition systems have many things in common; the data are
analyzed on-line to control the experiment and are written
on storage devices for further off-line analysis.

We have defined a common framework for a general-
purpose data acquisition system. It meets the following
requirements:

- the data source is open: the system can be enabled to
acquire data from various instrumentation buses;

- the data sink is open: data can be analyzed on-line by
concurrent processes and can be stored on different
types of mass storage devices;

- the system is ecalable: it can be used for low count rate
nuclear physics experiments (20 byte events at 200 Hz)
as well as in larger experiments such as the 100 neu-
tron detectors of the DEMON collaboration [1] (300 byte
events at 5§ kHZ);

- the user sits at the highest level of the data acquisition
system with the modern conveniences of workstations,

System Architecture

S~

II. SYSTEM ARCHITECTURE

A. Distributed Hardware

The system is designed following a distributed architec-
ture (Figure 1), The real-time data acquisition is per-
formed by a VHEbus system. It allows to connect a wide
variety of interfaces to external hardware as well as to
run data acquisition processes by various processor boards.
The user acquisition control and data haundling is delegated
to a standard workstation connected to the VHEbus system
by an Ethernet link.

From Detectors & Exp. Area

Lr—

IDigiuI Encadsnsl

FSENE] riale

D|D|D D|DID

cicle cleje
CAMAC BUS 2
M
—"['!] A
Wim|n rir c ¢
E viviv Iix B B

T M cle D
H Eixix A
E sls 8 A
1f1]1 212 2 N
R N als 1 c
N 71717 olo] H

L VMEbus

Figure 1: A Simple Distributed Architecture

In such an architecture, both parts are loosely coupled
and may be evolved on their own. The user workstation or
the VMEbus system may be replaced or upgraded without
redesigning the entire system.

S06SA05
265

-

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

B. Software Architecture

Evenis are defined as a set of structured and correlated
data which enter the system at random by interrupts.
Eventa! are assembled into larger, configurable, structures
called blocks.

A number of tasks can be implemented in the system
to read data simultaneously from data channels. A chan-
nel is characterized by an access mode: full or sample.
Tasks accessing data through a full-mode channel read
and process all the data blocks., They can therefore lead
to a considerable increase in the system dead-time. The in-
fluence on the data processing dead-time can be reduced by
sample-mode channels which access only a sample of the
data at the task’s own processing speed. A data storing
process works in the full-mode, while the sampla-mode
suffices for data monitoring. A block type parameter can
also be assigned to a data channel: read operation on the
channel will return only blocks of events of this particu-
lar type.

The Buffer System

The data acquisition system can be viewed as a producer
tagk — the event’s interrupts — and many consumer tasks
— the data analysis and storage — running concurrently to
fill and consume blocks of events, The producer and the
consumer tasks share a common buffer system.

A buffer refers to a block of events. They are arranged in
two doubly-linked lists {2) (Figure 2): the free list contains
buffers that can be used directly by acquisition interrupts
to store new events, while the valid list contains buffers
already filled with events but not yet processed. Buffers
can reside in both free and valid lists. This situation occurs
when they have been processed by all full-mode channels
but not by all sample-mode channels.

1 ﬂsr‘“‘lrr—*jsl
2 3}:::15]‘"

Figure 2: The two doubly-linked lists

Producer Part

At the beginning of a data acquisition, all buffers reside
in the free list. When the data acquisition process starts,
a buffer is extracted from the head of the free list and
becomes the current buffer. It is filled with events up to
its maximum size. It inherits the identification of the data
reading channels interested to process it and is added at
the tail of the valid and/or the free lists. A new current
buffer is extracted from the free list head and the procedure
continues.

1The event definition is not restrictive: an event can he CAMAC
data of a single physical event but can also be a block of data pre-
processed or filiered by other processors.

S06SA05
266

266

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JAColW-ICALEPCS1991-S06SAQS

Consumer Part

A data reading channel scans the valid liat until it finds a
new unprocessed buffer and returns the data to its parent
task, When the operation is completed, the buffer is
marked and is moved within the linked lists according to
three situations:

1. the buffer waits to be processed on another Zull-mode
channel: nothing happens. It remains on the valid list
and is safe from interrupts;

2. the buffer waits to be processed on sample-mode chan-
nels only: it remains on the valid list and returns at
the tail of the free list;

3. the buffer has been processed on every channel: it is re-
moved from the valid list and returned to the free list.

If the acquisition produces data at a faster speed than
the consumers process them, the free list will be emptied;
event interrupts are then disabled until a consumer process
returns a buffer to the free list.

III. IMPLEMENTATION

The ideas presented above have been implemented in a
VMEbus system running the VxWorks 5.0 kernel.

A. Hardware

The VMEbus systemn consists of three Motorola MVME147
boards with MC68030 microprocessors. Each board has
5CSI and Ethermet capabilities although they are not
used on all of the boards. The system has been used
so far with two different sources of data: CAMAC and
FIC8230 preprocessor,

CAMAC

The CAMAC crate is connected to the VMEbus by the
CES CBD8210 branch driver and the CCA2 crate controller.
The module allows the generation of CAMAC CHAF cycles
as VMEbue memory mapped addresses. This elegant fea-
ture provides a fast access to the CAMAC bus and facilitates
the software writing. The data acquisition system is inter-
rupted at each physical event by CAMAC LAMs,

FIC Preprocessor

The CES FIC8230 is a VMEbus board with a MC88020
microprocegsor. It runs a fast, specifically developed, ker-
nel. The processor receives events from a CAMAC crate or
from a DMA channel connected to local hardware. The mi-
croprocessor assembles events into blocks which are then
written directly to the last stage of the data acquisition in
a single interrupt,

B. Acquisition Software

To reach a high level of flexibility, the data acquisition
system has been layered (Figure 3). The real-time kernel
executes user tasks, which control the acquisition process
and read the data through the kernel I/0 system. At a

System Architecture

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

B \xWorks Kernel
| /O System |EN

User Dependent

Figure 3: Acquisition System Layering

lower level, the data acquisition software itself has been
structured in three layers:

1. the source independent layer comprises the data buffer
system and its integration into the kernel 1/0 system;

2. the source dependent layer implements routines to con-
nect the data source to the acquisition system;

3. the user dependent layer implements routines to render
the acquisition process suitable to the user needs.

Real-Time Kernel

The VMEbus processors run the VxWorks 5.0 real-time
kernel. This software has been selected for its:

- clear separation between system development and code
management tasks — on a UNIX system — and real-
time tasks — on VMEbus processor boards — which fits
naturally in our distributed architecture;

- platform independency on both sides: many UNIX plat-
forms and many VMEbus processors are supported;

- high networking capabilities with IP family of standard
protocols (TCP, UDP, RPC, NFS,...).

The kernel provides all real-time primitives: sema-
phores, events, message queues, control of preemption,
priority-based scheduling, ... as well as the standard C
library. It supports the notion of device driver which
provides a common interface to devices or pseudo-devices
through calls to the standard I/0 C library.

Multiprocessor Extension

The VxWorks 5.0 is basically a single-processor ker-
nel. To use the full power of the VMEbus system and
to obtain the requested scalability, multiprocessor (MP)
features have been added. The granularity of the MP-
architecture is situated at the task level.

The system has a master processor and many slave pro-
cessors. The master creates and owns the shared ressources
while the slaves manipulate them. We have implemented
MP-devices and MP-semaphores.

System Architecture

267

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JAColW-ICALEPCS1991-S06SAQS

MP-devices: Device structure has been splitted into a pri-
vate and a shared part. The private part is the stan-
dard VxWorks device structure refered to the local I/0
system. The local structure contains a reference to the
shared part of the device.

MP-semaphore: The MP-semaphore has been implemen-
ted with a shared flag protected by a spinlock varia-
ble [3]. The spinlock is accessed by indivisible
cycle machine instructions to eliminate contentions.
The MP-semaphore has a private, standard VxWorks,
semaphore in each of the participating processors.
Tasks waiting for the MP-semaphore sleep on the
private semaphore inside their processor. A remote
wakeup has been implemented with the help of the
MVME147 mailboxes.

System drivers

The data buffer system is accessed by two MP-device
drivers integrated in the VxWorks I/0system. They reflect
the producer—consumer relationship.

1. /dev/acq: The acquisition device controls the pro-
duction of the data. ioctls are used for example to
start and stop the acquisition by enabling and disa-
bling the interrupts in the master board.

2. /dev/mon: The monitoring device implements the
access to the data. Tasks open this device to get a
channel and read data.

The lower part of the acquisition device driver is con-

nected to the data source by four routines:

1. acqStart(): implements commands to initialize the
source when starting an acquisition process;

2. acqlntr(): is executed at each event interrupt;

3. acqRestart(): restarts the data source at the end of
the event interrupt handling;

4., acqStop(): executes commands to finish the data ac-
quisition process.

Each routine has an user defined part, which accesses
the user modules participating in the data acquisition.

Because of the VMEbus limitation of a single interrupt
handler on a given level, the data acquisition process can
be executed only on a single processor, the master, while
the data processing tasks run on several slave processors.

Network Servers

The remote control and data analysis from an user work-
station is executed by Remote Procedure Calls (RPCs)
servers running in the VMEbus system.
~ acqServer: executes ioctls on the /dev/acqdevice to
control the data taking;

- monServer: controls the /dev/mon device to grant ac-
cess to channels for remote data reading tasks;

- acqSysServer: supervises global parameters and pro-
cedures such as system directory, system reboot, ...

S06SA05
267

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

@ Content from this work may be used under the terms of the CC BY 4.0 licence (© 1992/2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-254-7 ISSN: 2226-0358

Workatation VMEbus

dataClient

'I

monServer

Standard RPC
Open an aog. dala channal
Open a TCP Port
Siart a data. Sc;nmr--T—I

(e

Low level TCP
sockal 110

Figure 4: RPC-Less Data Tranfer

Because of their widespread acceptance, SU¥ 4.0 RPCs
have been selected. To avoid retry problems, RPCs use
the TCP/IP underlying transport protocol. The machine.
dependent data format problem, unavoidable in a hetero-
geneous distributed environment, is solved by the Eziernal
Data Formal (XDR) layer of the RPC protocol.

The RPC mechanism is well suited to remotely control the
system, but its layers introduce a time overhead that is too
large to transfer a high rate of data. For this purpose, we
are using a less ressource consuming protocol (Figure 4).
The client contacts, with a standard RPC, the server to
open a data channel on the acquisition side and a data
communication port on the network side. A new specific
data server, receiving both I/0 descriptors, is created. The
network port descriptor is returned back to the client who
can establish a faster and reliable point-to-point connec-
tion (TCP/IP) to the data server to read events.

C. User Level Tasks

Users can run data processing tasks in the VMEbus
system, they simply access the data through the moni-
toring device in the same way as for any other device. By
this way the user can analyze data, build histograms, ...
Data can also be copied to a disk or a tape cartridge in
the VNEbus crate.

Users may want to access the data directly from pro-
cesses running in their workstation. They can use a library
of subroutines which takes care of the communication with
the network servers in the YMEbua system. Users must pro-
vide four routines: ‘

1. monStart: begins a data monitoring task;
2. processBlock: is executed for each block of events;
3. momRefresh: asynchronous user’s request handling;

4. monStop: completes the data analysis.

Processes respond to the SIGHUP and SIGINT signals.
The SIGBUP handler executes asynchronously the routine
monRefresh() to get intermediate results while the SIGINT
handler completes prematurely the data reading process.

S06SA05
268

ICALEPCS1991, Tsukuba, Japan JACoW Publishing
doi:10.18429/JACol-ICALEPCS1991-S06SA05

A workstation process must indicate the VMEbus board

" and device it wants to read and the data channel mode.

An example is the ddVME command (Figure 5), based on
the well-known UNIX dd to copy data.

% ddVME if=wvmeacqil:/dev/mon ofsdata.01 mode=full count=20
Varning: obs set to 1024 bytes

Connecting to 130.104.3.120(8#973) ... done

Process 18478 started ’

ddVME: 40/0 blocks ~-~> 20 blocks of 1014 bytes

Rate = 24980 bytes/s

Process ddVME terminated

Figure 5: Example of a workstation task

Workstation Interface

An X Window interface helps the user to configure
the VMEbus system and to control the acquisition pro-
cesses. The interface, written in the C++ language, uses
the NIE-CL and InterViews object libraries [4]. It imple-
ments Macintosh-like menus whose items are activated or
deactivated according to the experiment current status. It
uses dialogue boxes to get the data acquisition and moni-
toring parameters and to show their status. The main C++
class includes a method to dispatch user’s requests and
sends RPC requests to the VMEbus servers.

The user interface is able to listen to the data acquisition
system and transmit its messages to the user. For that pur-
pose, we have modified the InterViews events handler,
making it sensitive to asynchronous messages from the
VMEbus system.

Conclusion

We have developed a simple architecture for a data ac-
quisition system in which real-time data acquisition, moni-
toring tasks and system control have been loosely coupled.
This provides the flexibility of the system. The system is
now fully integrated within our network of workstations
and is used in experiments around the Louvain-la-Neuve
Cyclotron.

References

(1] G. Bizard, G. Costs, D. Durand, Y. El Masri, G. Guil-
laume, F. Hanappe, B. Heusch, A. Huck, M. Mossynsli, J. Pe.-
ter and B, Tamain: The Belgian-French Neutron Multidetector
DEMON, Proceedings on the International Conference an New
Nuclear Physics with Advanced Technigues, Iearapetra, Crete,
June 23~29, 1991

(2] The data scquisition system and its buffer system is inspired
by the UNIX kernel and the buffer cache, sec M.J. Bach, The
Design of the UNIX Operating System, Prentice-Hall, 1986,
[8] Lawrence M.Ruane, Process Synchronisation in the UTS
Kernel, USENIX Computing Systems, Vol §, 15990,

[4] M.Sibomana, Y. Longrée, P.Mareschal, M, Nemry,

A. Ninane and F.Somers, Direct Manipulation User Interfaces,
in New Computing Techniques in Physics Rescarch, éd. du
CNRS, 1990, and references therein.

System Architecture

VLR

