
A DIRECTORY SERVICE FOR THE CERN PS/SL JAVA PROGRAMMING
INTERFACE

J.Cuperus, P.Charrue, F.Di Maio, K.Kostro, CERN, Geneva, Switzerland;
W.Watson, TJNAF, Newport News, USA

Abstract
The CERN PS and SL accelerator control groups
developed a common application programming interface
(API) in Java [1]. Part of this API is a directory service
that provides information about the underlying hardware
and software. With this information it is possible to write
generic programs that do general actions on lists of
devices without hard coding of device names. And,
starting from a device name, full details about related
devices, the device itself and its class and properties, can
be obtained, including the meaning of bits and bitpatterns
in status words. The interface definition is independent of
any implementation but a reference implementation is
provided using Java Database Connectivity (JDBC)
against a set of tables in a relational database. Data from
very different systems can be brought together and
presented in a uniform way to the user. The full potential
of the directory service is reached when it is used in
software components (Java Beans).

1 INTRODUCTION
The Java programmer (the user) sees the accelerator
devices through an input/output service [1] that is object
oriented in the sense that it calls methods for device
classes but it has a narrow interface, meaning that there is
a single interface for all classes. Such an interface is well
adapted to generic programming but it is not possible to
do introspection through it in the Java sense. Anyway, the
user should have access to more information about the
details of accelerator devices, the properties of their
classes, and the relations between devices, than would be
possible by introspection of Java classes. To bring this
information to the user, the directory service was made
(fig.1).

 This service consists of an interface definition that is
independent of any implementation plus an
implementation that is adapted to the available data. We
will first describe the capabilities of the interface.

2 THE DIRECTORY INTERFACE
The directory interface is shown on fig.2.

Before doing anything else, the user must get a reference
to the DirectoryService singleton object with:

dir = DirServiceImplementation.getService();

After this, the user sees only the interface, not the
implementation. Having not yet acquired any specific
DirectoryItem objects, the user starts with a call to
DirectoryService like:

object = dir.getSomething(myString);

where myString is an identifier or a query, and object is a
name, or a DirectoryItem object, or an array of these. The
form of a valid query is implementation dependent. In our
implementation, it is a SQL query against the underlying
relational tables: “devicename like ‘BR3%’ ” or:
“classname=’POW’ and accelerator=’PSB’ ”. Where this
dependence is undesirable, avoid queries in favour of

Application Program

CDEV

I/O Service

Directory Service

Accelerator Devices

Figure 1 : I/O service and directory service

Database

Figure 2: The directory service interface consists of
two main parts: the DirectoryService class that can
return a DirectoryItem object when given an
Identifier and the DirectoryItem interface, and 7
interfaces that extend it, that return detailed
information about the object

DirectoryService
{abstract}

<<interface>>
DirectoryItem

equals()
getDescription()
getInfo()
getInfoLines()
getInfoWidth()
getName()
getServiceName()
toString();

<<interface>>
DeviceClass

<<interface>>
DeviceProperty

<<interface>>
BitPatternDefinition

<<interface>>
DeviceMessage

International Conference on Accelerator and Large Experimental Physics Control Systems

581

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

more specific identifiers. Suppose now that the user gets a
DirectoryItem object like:

DeviceData dd = dir.getDeviceData(“BR1.QNO”);

The user can now get detailed information from this
object with calls like:

DeviceClass class = dd.getDeviceClass().

2.1 DirectoryItem Interfaces

Once the user has obtained a reference to a DirectoryItem
object from the DirectoryService interface, he can get
further information about these objects through the
interfaces that extend the DirectoryItem interface:

• DirectoryItem: defines some basic methods,
extended by all following interfaces. The getInfo
method returns a text object with summary
information for browsers, help facilities, and bean
editors.

• DeviceClass: to get all properties for the class or an
ordered named subset of the properties. Classes may
be organised with multiple inheritance and abstract
classes.

• DeviceProperty: to get the attributes (type, dim, ...)
and characteristics (min, max, format, units, ...) of
the property. The characteristics may return either a
value or a property for obtaining the value through
the device access interface.

• DeviceData: to get values for accelerator device
variables. Some of these variables are mandatory
(such as the device class) and others are specific for
the implementation. Dependence on other devices is
obtainable through ‘role’ queries.

• DeviceGroup: to get the composition (title, devices,
properties) for the named device group.

• GroupList: to get the DeviceGroups that make up
the named list. A generic program can acquire a
GroupList to get the set of devices it has to work on.

• DeviceMessage: to get the attributes (category,
number, severity) and text parts (label, short text,
long text) of the message. All kinds of messages,
including error messages, labels, and help
information, are possible.

• BitPatternDefinition: to get the meaning of bits, or
groups of bits, in a binary word. The data for each
bit, or bit pattern, are in the form of a
DeviceMessage. In its simplest form, this reduces to
a correspondence between integers and strings but
considerably more complex patterns are possible.

2.2 Exceptions

Provisions must be made in case something goes wrong.
Almost every call can throw a DataNotFoundException
with subclasses:
- BadConnectionException,
- BadQueryException,

- NoSuchDataException,
- TooManyValuesException.

Handling exceptions in the application program is a lot of
work but, as explained later, the application program will
access the directory service mainly through components.
It is these components that will do most of the exception
handling and recovery.

3 IMPLEMENTATION WITH JDBC

Access to the implementation is through the singleton
object of DirServiceImplementation. This object
delegates all database access to the appropriate
implementations of the DirectoryItem interfaces. Several
sets of implementations of the DirectoryItem interfaces
can coexist for different parts of the installation. Few
installations will have complete data for all methods of
the interface. In case of missing data, a suitable default
value must be returned or else the NoSuchDataException
must be thrown. Caching of certain data in hash tables is
optional and objects returned by two identical queries
must contain the same information but are not necessarily
the same objects.

For the CERN accelerators, there is a single
implementation, based on relational database access
through JDBC (fig.3). A group of 10 database tables,
dedicated to the directory service, covers all the data.
Updating these tables from source data is done with
scripts using transactions so that all data remain available
to JDBC at all times in a coherent form. The source data,
and the scripts, are different for the accelerators of the PS
injector complex and those of the SL complex but the
directory service provides a unified view of those two
sites. A large part of the source data existed already,
before the directory service project started (see [2] for the
PS complex), but some data structures were modified and
forms were used to fill missing data by hand.

Directory Service Interface

Directory Service Implementation

JDBC

PS
update
script

Dedicated
tables in a
relational
database

PS
source
data

SL
update
script

SL
source
data

Figure 3: Directory Service Implementation

582

Figure 4: A simple data browser

4 APPLICATION COMPONENTS
The application programmer will normally work with
components (Java beans) and will not see the directory
service directly. The data in the directory service can be
used to initialise, or configure, the components. An
example is a component that displays I/O values for
selected devices and properties. All configuration data
can come from a DeviceGroup object. Scale factors,
formats, units, min and max values, can be automatically
extracted from the directory service.

Well designed components are extremely important and
their easy implementation is the main reason for using the
Java language. The close collaboration between
components and the directory service needs to be stressed
but only the DirQuery bean, which is directly related to
the directory service, will be described here.

4.1 DirQuery Bean

The application programmer may occasionally want to
see the directory service more directly while still working
exclusively with components. An example is the simple
data browser shown in fig.4. For these purposes, the
DirQuery bean was made (fig.5).

The DirQuery objects receive one main DataEvent and,
for some queries, an auxiliary DataEvent. The real input
parameters for the query are:

dataEvent.getData().toString;

The main event will start a directory service query with
these parameters and according to the query type. The
possible query types are given by final int variables with
names like:

CLASSNAME_DEVICENAMES

CLASSNAME_PROPERTIES . . .

The first part of the name indicates the input and the
second part the output. Twenty query types cover most of
the directory service.

5 BEAN CUSTOMISERS
A graphical design tool will introspect your bean and use
its default so called customiser to present the designer
with a GUI editor. The designer can use this customiser to
set the configurable parameters of the bean to his needs.
This customiser will look different in each design tool and
will give only minimal help to the designer.

An accelerator control system will have a limited set of
highly specialised beans and it is worthwhile to make a
dedicated customiser for each of them, even if this may
mean more work than designing the bean in the first
place. This dedicated customiser can make heavy use of
the directory interface for presenting the user on demand
with valid options and useful context information.

6 CONCLUSIONS
The Directory Service is an essential complement to the
Java equipment access API and permits generic
programming. The full potential of the Java API is
realised when used in Java beans for accelerator control
systems, both in the hidden inner workings of these beans
and in dedicated customisers. In that case, the user can
concentrate on what he wants to obtain without bothering
with the details of the interfaces or the brand of the design
tool. Further effort should go into producing an effective
set of such beans and their customisers.

REFERENCES

[1] F.Di Maio, P.Charrue, J.Cuperus, I.Deloose,
K.Kostro, M.VandenEynden, W.Watson, The CERN
PS/SL Application Programming Interface, this
conference.

[2] J.Cuperus, M.Lelaizant, Integration of a Relational
Database in the CERN PS Control System,
ICALEPCS-97, November 1997, IHEP, Beijing,
China.

DirQuery

receiveData1(:DataEvent)
receiveData2(:DataEvent)
addDataEventListener(:object)
removeDataEventListener(:object)g
etQueryType()
setQueryType(:int)

DataEvent 1&2

DataEvent

 Figure 5: DirQuery bean events & methods

583

