
THE ELETTRA OBJECT-ORIENTED FRAMEWORK FOR HIGH LEVEL
SOFTWARE DEVELOPMENT

C. Scafuri, Sincrotrone Trieste

Abstract

The new framework developed at ELETTRA is used
to build model based accelerator control programs. The
framework is fully object-oriented and has been
designed following the UML methodology. The
functions and responsibilities of the system are
distributed among different modules, forming a
hierarchy of layers of increasing level of abstraction.
The system is fully distributed and is based on the
CORBA distributed object model. All the design is
based on accepted standards, so that it can be ported to
different platforms. The parts of the software depending
on specific features of the underlying environment are
encapsulated and hidden by means of wrapper objects.
The full architecture and design processes are presented
in detail.

1 DEFINITION OF TERMS AND GOALS
A framework is “a set of co-operating classes that

make up a reusable design for a specific class of
software” [1]. It is not a closed solution, but rather a set
of Object-Oriented (O-O) tools that can be used for
writing programs dealing with some specific problem
domain. It is evident that a framework must be based on
a conceptual model of the problem domain. On the other
hand it will impose its conventions to the programs
based on its classes.
With High Level Software (HLS), we mean the
programs used to monitor and control the beam
dynamics view of the accelerator, transfer line or storage
ring. That is, programs used to calculate and modify the
accelerator physics parameters of the machine: for
example tunes, Twiss parameters, transfer matrixes etc.
HLS programs are also known as model based control
programs. In this category of programs the actual
readings obtained from the control system of the
machine - usually available in engineering units - are
transformed into quantities relevant to the accelerator
physicist by means of a mathematical model of the
accelerator. Model based controls are an established tool
for accelerators [2][3][4] and already used at ELETTRA
[5].
With this framework we want to give our physicists the
means to write HLS programs exploiting O-O
programming techniques, languages (C++) and tools
from start to end. The unrestricted use of O-O
programming techniques will reduce the development
and maintenance costs of our HLS programs. The O-O
programming approach will also help in case of

developments of the underlying control system and,
most important, for following the continuos
improvements and developments of our accelerators.
Among the other HLS programs, we foresee an online
model of the accelerator. The online model will be used
as a machine physics server and will be accessed
remotely by means of the CORBA technology. These
requirements give us constraints and guidelines for some
of the architectural choices.
Although HLS programs are also used for simulations,
they are usually limited to the linearised or first order
model [6] of the beam dynamics, leaving higher order
models to other specialised tools [7]. The first release of
the HLS framework directly supports the linearised
model.
The framework does not pretend to be usable for writing
machine design programs or to be applicable to any type
of particle accelerator. We assume that we are dealing
with electron accelerators of a synchrotron radiation
facility.

2 DESIGN OF THE OBJECT MODEL

2.1 General Considerations

In order to design a good framework we must
formulate an object model describing the most important
aspects of the domain and supporting the most important
and frequent operations needed by client programs.
Since the framework is not the final program, it will not
address all the possible algorithms or calculations which
may be needed. It will provide the tools to write those
algorithms and calculations. An important criterion we
follow is that the HLS framework is not meant to be a
general-purpose interface for controlling the accelerator.
The framework will be concerned with the quantities
directly related to the beam dynamics description; its
interface to the general control system will thus be
concerned only with these quantities. It will make no
provision for fault diagnostics, start up procedures and
other similar tasks.
The first step of the design of the object model, writing
the requirements and specifications, is one of the hardest
and most critical for the entire project. In order to
manage this phase we adopted, although rather
informally, the Use Case methodology [8][9][10] which
is part of the Unified Modeling Language-Rational
Unified Process (UML/RUP) methodology [13][14].

International Conference on Accelerator and Large Experimental Physics Control Systems

573

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2.2 Use Cases

The Use Cases are the result of a set of interviews
with beam dynamics and machine operations experts of
our institute. The Use Cases must cover a typical and
comprehensive set of the operations that will be
performed by HLS programs. As a starting point to
figure out the scenario of the framework, we have
selected the following Use Cases:

• Calculate the machine optics parameters
• Get the actual machine physics parameters of a

set of “elements”
• Transition between two different machine optics
• Scale the machine setting for a new beam energy
• Calculate various sensitivity matrixes to be used

by correction algorithms
• Check the effects of changing some parameters

on a simulated machine (do a what-if analysis)
• Check the injection conditions by tracking a

group of particles for some turns in the storage
ring

Although simple, these Use Cases sum up some of the
most typical tasks of HLS programs used in our
laboratory.

2.3 General Concepts and Ideas

From the analysis of the use cases and from the
literature about accelerator beam optics [7][11][12], we
derived a group of ideas or concepts for the design the
framework.
The particle beam is guided and shaped by a series of
“elements” acting on it by means of electromagnetic
fields. These elements are laid down along the ideal
beam path, which is formed by straight lines and arcs of
circumference corresponding to bending magnets. A
point of the “beam” is determined by its abscissa s. The
absolute position and orientation of an element can be
obtained by traversing the various elements and
accumulating displacements and rotations. We assume
that the elements are laid down with accuracy, but it
should be possible to take into account some small
misalignments (survey errors). Each electromagnetic
element is characterised by a set of physical (e.g. B, l,
and n for a combined function magnet) and geometrical
characteristics. There can be some constraints on the
freedom to choose the working point of some of the
elements, the typical case is that of a string of magnets
connected to the same power supply. In short, the
framework must offer the tools to assemble the model of
the machine. The bare model of the machine gives its
geometrical description (fig.1).

s

αρ

PSQ1

Q1.1 Q1.2

Q2.1 Q2.2

Figure 1. Bare machine model.

The readings of real or simulated control system
variables are transformed by means of some algorithm
into pertinent physical variables and then into “optical”
parameters (e.g. focal length for a quadrupole) for each
electromagnetic element. Calculations are for the great
majority performed following a rather repetitive schema:
start with an initial value, step through each
electromagnetic element of a given set and transform the
value according to the characteristics of the element
(fig. 2).

Q1.1 Q1.2Q2.1 Q2.2

1 2 3 4

1p212

x’

x

*

100

’’’’x

x
































=

















→

DSC

DSC

Figure 2: typical calculation scheme

Client programs must have the possibility to use a “live”
machine model, with the possibility of changing the
machine settings, or a “model” machine without these
capabilities.
As we foresee to write an on-line accelerator model
server, we include also a set of CORBA interfaces in the
framework in order to make it usable within a
distributed object-programming environment.

2.4 The Object Model

From these ideas, we have derived the object model of
the framework. The class hierarchy is divided into three
main areas: electromagnetic elements, devices and
machine. Electromagnetic elements handle the machine
geometry and beam optics parameters; they are the
fundamental building blocks of the actual machine
model. Devices handle the entire interaction with the
physical devices via the underlying control system.
Machine is the assembly of elements and devices plus
some global properties and functions. The model is
presented in the form of diagrams drawn following UML
conventions.

p
p

∆ p∆

574

3 ELECTROMAGNETIC ELEMENT

3.1 EMelement

The Electromagnetic Element (EMelement) class
includes the fundamental building blocks needed for
machine modelling (fig. 3). All the EMelement objects
share some common characteristics: name, geometric
information, survey errors and matrixes for linear optics
calculations. A sequence of EMelement objects also
defines implicitly the layout of the machine and the
geometry of the reference orbit.

EMelement

Marker

Drift

BPM Magnet

PulsedMagnetRFcavity

Wiggler

0..1
EMelement Helper

EMelementDepot

FileDepot

DBDepot

EMelement Factory

CORBA inteface

Figure 3: EMelement class diagram.

Objects of this class can also handle a reference to an
EMelement Helper object. The EMelement Helper is a
class used mainly during the building of the machine
model. It is a composite object containing a reference to
a repository (EMelement Depot) from which it is
possible to retrieve the data needed to initialise correctly
an EMelement. The EMelement Helper is also a factory
object [1] that can be used to create automatically a fully
configured EMelement. It is realised as a singleton [1],
thus eliminating the need to have global variables in the
final applications. The EMelement Depot is defined as
an interface accessible also through CORBA. The actual
realisation of EMelement Depot can be in the form of
File Depot, taking all the needed parameters from a
configuration file, or in the form of DB Depot, taking all
the needed parameters from a relational database. The
DB Depot is typically utilised as a CORBA service.
The EMelement class is specialised into a series of
components. We will examine in detail the Magnet
class, because it is the most important and is a good
prototype for the remaining classes.

3.2 The Magnet Class

The Magnet class is an abstract class. It is further
specialised into the various types of magnets used in our
machine. All Magnet objects have a reference to one
Current Controller objects, reflecting the situation that
each “real” magnet is connected to one power supply (at
least for our machines). All Magnet Objects are
composite objects, each containing a specific instance of
a MagField object (fig. 4).

Magnet Current Controller
1

Dipole Quad Sext Kicker

MagField::Dipole MagField::Quad MagField::Sext MagField::Kicker

Figure 4: the Magnet class.

The main task of Magnets is to handle the updating the
various matrixes and optical parameters from the values
obtained from MagField and Current Controller.

3.2 The MagField Class

The MagField Class (fig. 5) handles the conversions
from current to magnetic field components: Bx=f(I). It
also handles the inverse conversion from main magnetic
field component to current: I=g(B). The conversions are
carried out with an interpolation algorithm, specialised
according to the particular class of the magnet. In order
to initialise correctly the coefficients or tables needed by
the algorithm or to build automatically MagField
objects, we can use a MagField Helper class. This class
follows closely the design pattern of the EMelement
Helper class to which the reader can refer.

MagField

Dipole

KickerQuad

Sext

1 MagField Helper

MagFieldDepot

MagField Factory

FileDepot DBDepot

CORBA inteface

Figure 5: the MagField class.

4 DEVICE

4.1 Devices and the Control System

The abstract class Device is the basis of all the classes
that encapsulate the interaction with the Control System
of our machines (fig. 6). The Device class is designed to
give access only to the parameters relevant to machine
physics, not as a replacement of the general Control
System facilities. In this way, we minimise the
dependency of the Device class from the underlying
Control System implementation. Eventual modifications
or enhancements of the Control System will have a
small and localised impact on the HLS framework.

575

Simulated

Device

Controller

Field Connection

Active

1 1

Monitor

Controller Factory

Controller Manager

Simulation Only Manager

Current Controller

Voltage Controller Frequency Controller

Phase Controller

Displacement Controller

EMelement
1 1..n 1 n

Figure 6: the Device class hierarchy (partial view).

4.2 Field Connection

The Device class is designed as a composite object,
always containing a Field Connection object. This
abstract class defines the interface for the exchange of
values with the field. It defines two operating modes:
active and simulated. Active connections manage true
interactions with the field, that it is an active connection
can modify the live parameters of the machine.
Simulated connections cannot modify the live machine;
modification requests are faked by using the requested
set point as the value for the successive readings.
Simulated connections can however read the actual
values from the field.
Field Connection is specialised into two concrete
classes: Active and Simulated. The Active class
implements the full field access functionality and the
simulation mode functionality. The Simulated class
implements only the simulated connections. The
Simulated class is used for safety reasons by HLS
programs that are not allowed to modify the machine
settings, for example simulators or operator training
programs.

4.3 Controller and Controller Manager

The Controller class models a device capable of
reading and setting values on the machine. Each
controller is associated with one or more EMelement
objects, while each EMelement is associated to one
Controller. These associations can be traversed in both
directions. This feature mimics the situation in which a
single device controls a family of elements; the typical
case is a power supply connected in series to a string of
magnets. From another point of view, we can say that
these associations express the constraints on the degree
of freedoms available for controlling the machine.
Controllers and EMelements also provide a set of tools
to navigate among the web of associations. The
associations are implemented by means of object
references and standard C++ associative containers.

The Controller class is finally specialised into
controllers specific to the actual quantities: Voltage,
Current, Frequency, etc.
Each Controller is also associated to a Controller
Manager. A Controller Manager performs global
management of Controller objects, for example the
switching between active mode and simulation mode.
The Controller Manager handles a list of all the
Controllers and acts as a factory object for Controllers.
A specialisation of Controller Manager, Simulation Only
Manager, has factory methods that return Controller
objects with a field connection object of the Simulated
specialisation.

4.4 Monitor and Monitor Manager

The Monitor class models a device capable of reading
values on the machine. It is typically used to describe
beam instrumentation objects. A Monitor is associated
with a single EMelement. The Monitor Manager is
analogous the Controller Manager, the reader can refer
to it for details. The Monitor class has a single
specialisation, Position Monitor.

5 MACHINE

5.1 Machine, Line and Ring Classes

Objects of class Machine are the repositories where all
the components of the model of a machine are
assembled (fig. 6).

EMelement Collection

Section Collection

Section EMelement

1..n

Machine

G_C_S
nom_En
...

MachineBuilder

File Builder DB Builder

Controller Manager

Monitor Manager
EMelement Helper

MagFiled Helper

Line Ring

CORBA interface

CORBA interface

Figure 7: Machine and other auxiliary classes.

A Machine object provides also the tools (iterators) to
navigate the web of elements. The Section class (fig. 7)
is an auxiliary container used to build some logical
grouping of elements and facilitate the navigation.
Each Machine object manages a group of global
properties of the model, for example nominal beam
energy, global co-ordinate system (GCS), etc. The GCS
is the absolute position and orientation of the reference
point (s=0) of the machine. The GCS is useful when we
have to assemble different machines and, for example,
must check that the beam extracted from one machine
can be injected into the next.

576

A CORBA interface is defined for using Machine
objects in distributed applications.
The Line and Ring subclasses add to the basic Machine
class the specific methods to calculate beam dynamics
properties of that type of machine, (e.g. equilibrium
emittance, radiated power, etc.). The two subclasses add
also some specific geometric properties (e.g. injection
and extraction points, location of light ports, etc. for a
Ring). The CORBA interfaces for Line and Ring are
derived (subclassed) from the CORBA interface of
Machine.

5.2 Auxiliary Classes

Two auxiliary classes are designed to work together
with the Machine class: Section and Machine Builder.
Section is just a named container of EMelement objects.
It provides some logical grouping and facilitates the
traversal of the machine model. For periodic machines,
it may be used to assemble a period of the lattice.
The Machine Builder is a factory of Machine (Line,
Ring) objects. Actual Machine objects are built starting
from a description stored in a configuration file (File
Builder specialisation) or from a database description
(DB Builder specialisation). Machine Builder objects
use the services of the various Helper classes already
described. Builder objects will be the preferred tools to
assemble working machine models in HLS programs.

6 CONCLUSIONS
Machine physicists using the new HLS framework

have to deal with a set of entities and concepts that are
very close to their mental image of the problem. As a
further benefit, they can exploit the existing and
continuously evolving O-O tools and libraries such as
the ANSI C++ Standard Template Library [15] or the
catalogues of well documented “design patterns” [1]. All
the programming efforts are directed toward the solution
of the real problems, with fewer efforts wasted for
solving trivial tasks. The practical benefits are faster
developing times and easier maintenance for the new
HLS programs.
The use of UML/RUP methodologies and diagrams for
the design of the framework has proven to be effective
and useful.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

“Design Patterns – Elements of Reusable Object-
Oriented Software”, Addison-Wesley Longman
1995.

[2] A. Akiyama et al. “Integration of the Modeling
Program with Accelerator Control Systems in
TRISTAN”, Proc. ICALEPCS 95, Chicago 1995.

[3] S. Kuznetsov, “C++ Library for Accelerator Control
and On-line Modeling”, Proc. ICALEPCS 95,
Chicago 1995.

[4] B.A. Bowling et al. “The Use of ARTEMIS With
High-Level Applications”, Proc. ICALEPCS 97,
Beijing 1997.

[5] M. Plesko, “An Approach to Portable Machine
Physics Applications”, Proc. ICALEPCS 95,
Chicago 1995.

[6] J. Rossbach, P. Schmüser, “Basic course on
accelerator optics”, CERN 94-01, Vol. I.

[7] F. C. Iselin, “The MAD Program User’s Reference
Manual”, CERN/SL/90-13.

[8] G. Chiozzi, “Use Cases for Requirements Capture
and Tracing”, this conference.

[9] G. Schneider, J. P. Winters, “Applying Use Cases”,
Addison Wesley Longman 1998.

[10] A. Jaaksi “Our Cases with Use Cases”, Journal of
Object-Oriented Programming, Vol. 10, No. 9, Feb.
1998.

[11] F. Willeke, G. Ripken, “Methods of Beam Optics”,
DESY 88-114, Aug. 1988.

[12] R. V. Servranckx, K. L. Brown, “Circular Machine
Design Techniques and Tools”, SLAC-PUB-3942,
Apr. 1986.

[13] M. Fowler “UML Distilled: Applying the Standard
Object Modeling Language”, Addison-Wesley
Longman 1997.

[14] J. Rumbaugh, I. Jacobson, G. Booch “The Unified
Modeling Language Reference Manual”, Addison-
Wesley Longman 1998.

[15] D. R. Musser, A. Saini “STL Tutorial and
Reference Guide”, Addison-Wesley Longman 1998.

577

