
DATA ARCHIVING IN EPICS
K. Kasemir, L. Dalesio, LANL, Los Alamos, New Mexico, USA

Abstract

The Data Archiver is operational at the Low Energy
Demonstrator Accelerator (LEDA) at Los Alamos
National Laboratory (LANL). In the original design,
several data taking engines were foreseen. In the
implementation, the periodic engine and the monitor-
based engine were combined. This paper discusses the
performance, disk utilization, and use of the Archiver. It
will also talk about plans for data management, the
integration of the archive viewer from Jefferson
Laboratory, and modularization to support other data
storage methods.

1 INTRODUCTION
Since the original design, the EPICS Archiver has

undertaken several significant changes. Most important
has been the rewriting of the archive engine, so that the
data retrieval and data collection would share a common
set of access methods. This new work has been
performed by Kay Kasemir at LANL. The original file
structure and functions reported at the ICALEPCS in 1997
have been maintained [1]. This paper now covers the
performance, disk utilization, use of the Archiver; the web
based archive control and data viewing, the code structure
and the current state of archive data management.

2 PERFORMANCE
Several performance tests have been performed on the

channel Archiver. The original tests performed were to
study the relative delays between seek, file open/close,
large buffers and small buffers. The result was reported
in the original paper. The later tests are performed on the
new archive data taking engine and retrieval routines.

Retrieval tests were done on two data sets using an
Ultra 1 from Sun Microsystems. The first set contained
over 3.0 Gbytes of data taken over 1 year. A minimum of
one file per day was created. Some of the early data had
as many as six files per day. The second set of tests was
done on a data file that was split from the original and
contained only the last 3 months of data with only one file
per month. This second file contained 1.3 Gbytes of data.
In the first set of tests, data was fetched for the first of
every month going back in time. Two measurements are
given; one for CPU time used and the other for actual
elapsed time. During tests on the large data set, where
data was retrieved from the previous month, the CPU
usage time ranged between 7 msec and 16 msec. Elapsed

time ranged from 1 second to 2 seconds. Testing retrieval
for each of the last ten months, the CPU usage time
ranged from 120 msec up to 1,160 msec. Elapsed time
ranged from 1 second to 98 seconds. The elapsed time
became shorter as subsequent tests were run. It is our
belief that as the tests were run, more resources were
assigned to our task, but we have not studied this in
sufficient depth. Another possibility for the disparity in
retrieval times may be bad file links in the archive file.
The delay of over a minute to retrieve archive data is
unacceptable and we will continue to work to understand
the issue. The second set of tests was done on the three
monthly files that were extracted from the original. The
total range for CPU usage accessing any of the data was
40 msec to 280 msec. The elapsed time never exceeded
one second. This second set of tests was well within all
performance parameters.

Data collection tests were performed on a 450 MHz
Pentium II. In both tests, the buffers are being flushed to
disk every 15 seconds, which means that we are buffering
150 samples per channel. When archiving 500 channels at
10 Hz, the CPU load was normally at 20% with peaks to
100% for five seconds every 15 seconds. Then a test was
done for 1,000 channels at 10 Hz. The CPU usage was at
100% continually. In the last case, we are loosing a little
data. Tests will be rerun with circular buffers that can
support more than the number of samples required for the
specified interval. In the second case, the web-browser
was used to access the status of the Archiver while
archiving was active. Status data took about 5 seconds to
appear, which was much slower than normal. However,
the Archiver continued to catch all signals.

Performance requirements for the Archiver stated that
we would archive 10K channels per second on a $5,000
computer and access as many as 4 channels from as long
ago as 30 days in under 4 seconds. Shortly, all of these
requirements will be met. We still have concern about the
numbers that we observed for accessing data from more
than six months ago, however.

3 DISK UTILIZATION
Modifications since the original work include an

incremental buffer assignment and some data compression
capability. When data is being taken for a new file, the
original buffer is allocated for 64 values. This minimizes
the disk usage for a channel that is not changing very
rapidly. If this buffer is filled, a new buffer in the same
file is allocated for 256 samples. When this buffer is

International Conference on Accelerator and Large Experimental Physics Control Systems

463

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

filled, all subsequent buffers are allocated at 1,024
samples. The file split utility also compresses these data
files by combining the buffers into chunks up to 4,000
samples in length. In addition to combining the chunks, it
also removes any unused buffer space. The data being
archived includes the process value, time stamp and alarm
condition. If a value does not change, two samples are
stored, the first time it was at this value, and the last time
is was at this value. Other than this, nothing is currently
done to reduce the disk space being used.

4 ARCHIVER USE
The Archiver has been in use at LEDA for just over a

year. It is also being tested at the Synchrotron Light
Source (SLS) at the Paul Sherrer Institute (PSI) and ISAC
at TRIUMF. At LEDA, we are archiving around 1,800
signals every 30 seconds. This is only 60 samples per
second. In the first year, we collected over 3 gigabytes of
data. Since August of 1999, we have been archiving
approximately 1.2 Gbytes per month, which compresses
down to 400 Mbytes per month. In addition, several
archives have been set up at LEDA to find controller
responses or study problem areas. These studies were
archiving every change with a maximum rate of 10 Hz.

5 USER INTERFACE FOR OPERATION
AND DATA VIEWING

The goal of the user interface for both operation and
data viewing is to make status, control, and data retrieval
available on any workstation with reasonable ease and
acceptable performance. The original data archive engine
had the user interface as an integral part of the code. This
has two major problems. First, the Archiver could not be
started without a windowing environment and therefore
could not be started when the workstation rebooted.
Second, the status of the archive engine was only
available at the workstation where the Archiver was run.
A data viewer from Jefferson Laboratory [R] that allows
users access to this data provides a great tool for studying
the data in the UNIX environment. At LEDA, we also
need access to this data from PCs, so an additional tool
was made.

 To determine the best approach to solving these
shortcomings in an expedient way, alternatives were
considered. This study of alternatives is presented in
Table 1.

The availability of client programs for all platforms of
interest (Win32, Unix) was considered the most important
factor. A defined protocol is preferred over a newly
designed protocol since it provides better chances for
finding general tools, having a lower development cost,
and ease shared development. Therefore, HHTP was
chosen because it provided the bests results for little
effort. The only problem with this approach is the
handling of dynamic status updates. In this approach,
there is no way of telling the browser about new

information, since HTTP does not define a common
server push mechanism. Using the client pull mechanism,
the browser will simply update periodically, regardless of
actual changes. As for any Epics addition, Channel
Access (CA) was initially considered a natural choice.
The engine would then serve pseudo channels like
X_is_archived for each channel X.

AS IS CA
SERVER

HTTP CORBA BUILD
IT

CLIENTS
EXIST

X11 EPICS
CLIENTS

WEB
TOOL

NONE NONE

PROTOCOL
DEFINED

N/A YES YES YES NO

1 CLEINT
PER

ENGINE

YES YES YES YES YES

> 1 CLIENT
PER

ENGINE

NO YES YES YES YES

CHANNEL
SEARCH

NO YES NO ? YES

>1 ENGINE
PER

CHANNEL

YES NO YES ? YES

MONITOR
>1 ENGINE

PER
CLIENT

NO YES No ? YES

DYNAMIC
STATUS
UPDATE

YES YES PUSH ? YES

Table 1: Alternatives for providing a user interface
to the Archiver for data collection

Unfortunately, only few non-UNIX display tools are
available for CA, and none of them fit the Archiver
requirements well. CA is currently limited to a single CA
server per computer that serves the same channel only
once per sub-net. The custom TCP/IP protocol approach
allows the implementation of all the desired features.
However, the necessary development for protocol
definition would definitely postpone the first release of a
new archive engine. CORBA was not investigated
thoroughly because of time constraints. It might still be
the second best choice to HTTP for someone interested in
writing sophisticated clients that need deeper access to the
engine. The channel access server approach may be more
attractive when the current limitation of one server per
workstation is removed. The HTTP server was chosen

464

and made operational in several weeks. Figure 1 shows a
screen that is available for viewing archived data.

.

Figure 1: Data Retrieval

6 CODE STRUCTURE
A set of database-style C++ classes is under

development for reading and writing Channel Archiver
data files. The top-level Archive class provides channel
information via ChannelIterators, which in turn can
generate ValueIterators that hold a Value for a specific
point in time. They are based on the current standard C++
library as described in [2] with few exceptions:
1) (FILE *)-I/O is used to access the Channel Archiver

files because tests yielded poor results for seeks using
the standard C++ fiostream classes

2) The standard exception class is not used as a base
class because the present egcs C++ compiler (used on
Linux, Solaris, HPUX) does not support them.

The Value class allows access to a value’s time stamp,
status information and numeric value in both numeric and
string format, independent of the underlying dbr_time_xxx
type which is actually found in the archive. An example
of this code is shown in figure 1. The code is currently
running on Win32 with Microsoft Visual C++ 6.0 as well
as many UNIX systems, namely Linux, HPUX, and
Solaris with egcs-2.91.66.

Whenever possible, these iterator-type helper classes
should be used. Not only do they allow easy sequential
access; they are also highly generic thus portable to a
matching set of classes that could operate on a
commercial relational database.

// Given a Channel Archiver directory file name
// and regular expression channel name pattern,
// list values stamped from start to end time
// for all matching channels:
void listValues (const string &directory, const
string pattern,
const osiTime &start,
const osiTime &end)
{
 Archive archive (directory);
 ChannelIterator channel =
 archive.findChannelByPattern (pattern);

 while (channel){
 cout << "Channel: " << channel->getName()
 << endl;
 ValueIterator value;
 for (value =
 channel.getValueAfterTime(start);
 value && value->getTime() < end;
 ++value){

 cout << *value << endl;
 }
 ++channel;
 }
}

7 DATA MANAGEMENT
There are many ways to provide data compression. At

present the only one supported will split a file into pieces
and remove unused buffer space. This allows older data
to be removed to secondary storage as a means of data
management. It also allows data to be removed to other
machines to be studied. In the future, a compressive tool
to provide data management is planned.

8 CONCLUSION
The tool for providing long term archiving has been

running at LEDA for one year now. A replacement that is
written in C++ and produces the same file format is in
beta test and offers a network interface to runtime archive
information and archived data through a web browser.
The new code also enables the replacement of the iterator
class talking to an in-house file format, with data storage
to a relational database or some other data store. In the
future, a server like CORBA or Channel Access may
make the data available though a client interface, but
LANL is not planning such an effort. Both data taking
engines are near meeting the requirement of saving 10K
samples per second. They are able to retrieve data from
the last eight hours in less than 1 second and retrieve the
last 30 days in less than 4 seconds. Further work is
required to provide an extensive set of data management
functionality.

REFERENCES
[1] L.R. Dalesio, et.al. “Data Archiving in Experimental

Physics,” ICALEPCS’97, Beijing, Nov. 1997.
http://www.aps.anl.gov/icalepcs97/paper97/p218.pdf

[2] B. Stroustrup, The C++ Programming Language, 3rd
edition, July 1997, Addison-Wesley

Figure 2 of the iterator
class to report archived data

. Typical Use

465

