
RESULTS OF PORTING REAL-TIME FRONT-END SOFTWARE
TO LINUX

D. Anicic, T. Blumer, I. Jirousek, H. Lutz, A. Mezger
Paul Scherrer Institute, Villigen, Switzerland

Abstract

Increasingly less expensive, more reliable, state of the
art, standard PC components, with the now stable
operating system Linux, provide a solid base for a port of
the Accelerator Control Front-End. The poster shows
odds and evens of the project in all it's phases, from the
analysis, through the implementation and testing, to the
integration into the Accelerator Control operation. To
better judge the results of the project, we provide the
comparison against the existing Real-time Unix
platform.

1 INTRODUCTION
Looking at the future needs for the accelerator control

system one can not overlook the desire to achieve the
better performance, which is easily managed by
introducing faster CPUs. In order to keep the hardware
costs of the whole system at an acceptable level, we
would like to use inexpensive standard PCs, powered by
an Unix like operating system, Linux.

2 OUR CONTROL SYSTEM

2.1 In general

In order to achieve good performance, we have
implemented the distributed control system, client-server
based, message oriented. The clients, mostly X-windows
workstations used as operator consoles, run all the
necessary applications. They communicate their request
messages to the front-end computers (FEC), which
perform the actual input-output. Load balancing is easily
achieved in such a system by introducing additional
client and/or server computers. For more details see [1].

2.2 Front End Computers

Front-end computers interface the client application
requests to the underlining process, the accelerators, over
the CAMAC field bus. All input/output is handled at the
front-end level. We look at the front-end computers as a
collection of services, as shown in Fig. 1, which perform
similar, but logically different tasks. The services are:

• PIOser, for single value I/O
• BLKser, for block of values I/O (profiles, …)
• LOOPser, for CAMAC loop manipulation
• ILKser, for the security system (INTERLOCK)
• LAMser, a CAMAC Demand messages dispatcher

• CAMser, for direct CAMAC access (HW tests
only)

The services accept the client requests, process them
evoking (sometimes repetitive) series of field bus
operations, the results of which are analyzed to
produce the replies. The analysis may involve complex
calculations, introducing quite big software overhead.
In such a system we can benefit from faster CPUs.

2.3 Services

The Services process client request messages. For
historical reasons these are raw Ethernet messages. On
the other hand the services within the same front end
communicate between themselves (mostly LAMser with
the others) using Unix message queue mechanism (inter-
process communication, IPC). We also support the
UDP/IP based communication. The implemented
structure allows easy addition of any other
communication mechanism. The Service also has to be
able to process incoming requests and schedule them for
further repetitive execution. The most natural approach
was to implement Services as multi-threaded processes.
Every receiving mechanism is handled by separate
thread, requests are inserted in a common incoming
queue which is emptied by the main processing thread.
Requests for repetitive execution (yet another thread) are
stored in a scheduled message queue. The queues are
guarded against concurrent access by semaphores. In the
initial design we had a strong emphasis to be portable,
and therefore selected the POSIX standard, POSIX
Threads and POSIX Real-time extensions as
implementation strategy. Fig. 2 shows the Service’s
multithreaded structure.

CAMAC

N
et

w
or

k

C
A

M
A

C
d

ri
v

er

N
e

tw
o

rk
In

te
rf

a
ce

L A M s e r

PIO ser

O T H E R ser

L O O P se r

B L K ser

IL K se r C A M A C

O th er
P roc ess es

HP-RT or Linux

E therne t
U D P

Fig.1: FEC as collection of Services

International Conference on Accelerator and Large Experimental Physics Control Systems

134

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy



3 CAMAC INTERFACE

3.1 Hardware

Front-end computers access the process equipment
through CAMAC serial interfaces. At the time being our
FECs are VME based HP rt743 running HP-RT (Real-
time Unix). With them we use a CERN developed VME
based CAMAC serial interface. For the PC-Linux port of
the FEC software we tested two PCI based interfaces: the
Kinetics System model 2115 (K2115) and Hytec
Electronics model 5992 (H5992). We have found H5992
more useful for our needs even though the tested version
was not complete, and are looking forward to test the
final production version. The K2115 seems to be more
suitable for data acquisition than control. It supports only
execution of list of CAMAC commands, which is not
optimally suited for our single command oriented
approach while it introduces unnecessary overhead.

3.2 Software

For both, the present VME based rt743 FEC and PC-
Linux port there is no CAMAC interface device driver
available. Therefore we had to implement our own
drivers.

4 PORTING

4.1 Preparations

As first step in porting our software to the Linux based
PC we had to install the Linux operating system. It is a
trivial task if one does not have to deal with all the
newest PC hardware components (Ethernet, graphics,
…). It was not our first Linux installation, so we had
only some problems forcing Ethernet card in 100 MBit
full duplex mode, but solved it by changing the Ethernet
card. Afterwards it went easily, NFS mounted disks gave
us direct access to the source code, and with the pre-
installed GNU C compiler we were immediately in
business.

4.2 Posix threads

Although Posix threads library should be the same on
all the platforms, we did not found it such. There seem to
be small discrepancies between the HP-RT and the Linux
implementation. The minor differences are mostly in
parameter passing mechanism (by reference vs. by value)
and in very few cases different function names. The
porting was done in less than two days, while we
implemented the threads related code as macros defined
in a single C header file.

4.3 Communication

Raw Ethernet access is very operating system specific,
and in that sense not portable. The Linux kernel that we
use (2.0.36) supports it only in promiscuous mode, so we
did not port it. At the time of writing this article we have
installed the newest Linux version (kernel 2.2.x) and
found support for raw Ethernet. After few tests we
estimate the port would not take more than a day.
UDP/IP and IPC mechanisms required just slight
modifications. The lack of raw Ethernet access did not
cause us any problems. On Service startup configuration
file is read and required or supported receiver threads are
started. In this case we just had to disable the Ethernet
receiver thread.

4.4 CAMAC driver

Drivers are not portable. They always have to be
redone. But, since the present system is Real-time Unix
and we were porting to Unix like Linux, the changes
were not enormous. One of the differences is that present
HP-RT system supports kernel threads (and we used
them) and Linux does not. That means that interrupt
handling kernel thread would have to be implemented as
interrupt service routine. Interrupt service routine was
not done while the serial CAMAC interface we mostly
tested, H5992, does not support serial CAMAC demands
(interrupts) properly yet. The rest of the driver code was
ported in about one week, with additional week needed to
understand how to handle either of the tested CAMAC
interfaces. We had some worries about PCI plug and play
mechanisms, but it turned out to be no problem at all.

4.5 Miscellaneous

Among other pieces of code to be ported comes the
process memory locking (rt743 is a diskless single board
computer with the NFS mounted disk) to avoid any
possible swapping and/or paging. The code is slightly
different, but it is a trivial modification. We have spent a
great amount of time (about 20 %) because the GNU C
compiler is stricter than HP C compiler. A lot of castings
and function prototypes had to be inserted in a few dozen
C files.

In Q

Ethernet
receiver
thread

Ethernet

UDP
receiver
thread

UDP

Msg Q
receiver
thread

IPC

Start/Stop
thread

Sched Q

Scheduled
executor
thread

Executor
thread

CAMAC

IPC

UDP

Ethernet

Fig. 2: Service multithreaded structure

135



5 RESULTS
We were very pleased with the rapidness of the porting

which took less than three weeks. It also resulted in our
code being even more portable (casting and function
prototypes mentioned above). We are also satisfied with
the performance of the PC-Linux FEC. As an average we
can assume an up to three times performance
improvement, visible on Fig. 3. Here we have to mention
that some (15 %) of the performance win is due to the
100 MBit full duplex Ethernet on PC-Linux against the
10 MBit half duplex on HP rt743. Of course there are
some disadvantages, too. We have found that scheduled
sleep on Linux can not take less than twenty milliseconds
where we would prefer ten. Therefore maximal hundred
times per second repetitive execution has to be reduced to
fifty. Furthermore, Linux threads can not be scheduled
with the accuracy and priority of the Real-time Unix. The
result are the lags in request-reply closed loop times. We
have observed the lags of up to 100 milliseconds. They
occur in less than one in a thousand, and the overall
performance
improvement highly compensates that.

6 CONCLUSION
The so far good results should additionally be tested

for long run stability of the ported software, the PC
hardware and the Linux operating system in our control
system as a whole. Altogether it seems to be a very good
and an highly acceptable solution for getting additional
processing power with less cost.

REFERENCES
[1] , T. Blumer et al, “Status Report of the PSI

Accelerator Control System”, ICALEPCS’95,
Chicago, Illinois.

FECperformance

0

5000

10000

15000

20000

1 10 20 30 40 50 60

cells/list

ce
lls

/s
ec

HPrt74364MHz,
BitSerialCamac,
UDP,Switched
Ethernet

Linux333MHz,
H5992BitSerial
Camac,UDP,
SwitchedEthernet,
100MbitFD

Fig. 3: FEC performance comparison

136


