International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

EPICS: PORTING iocCORE TO MULTIPLE OPERATING SYSTEMS

M. Kraimer, Advanced Photon Source, Argonne National Laboratory, Argonne, IL USA

Abstract

An important component of EPICS (Experimental
Physics and Industrial Control System) is iocCore, which
is the core software in the 10C (input/output controller)
front-end processors. Currently iocCore requires the
vxXWorks operating system. This paper describes the
porting of iocCore to other operating systems.

1 INTRODUCTION

Originally 10C (input/output controller) meant a
VME/VXI-based system that interfaced to various
hardware interfaces. Today it is aso used on non-VME
systems as well as software-only systems. It does,
however, still require the vxWorks operating system. The
goal isto remove the dependency on vxWorks.

The 10C software can be divided into the following
categories:

e vxXWorks- A proprietary real-time operating system
e iocCore - Core EPICS software, described below
e Hardware support - Support for specific hardware

An EPICS IOC alows extensible record/device/driver
support, i.e., there is a clear separation between iocCore
and hardware support. Thus iocCore can be used without
hardware support and/or support for non-VME based
hardware. Beginning with the 3.14 releases, iocCore will
be implemented via Operating System Independent (OSl)
libraries.

iocCore includes the following components:

« Database locking, scanning, and processing

e Channel access client and server

e Standard record types and soft device support
e Access security

e Other non-hardware specific components

The port is based on the following assumptions:

e All hardware support will be built separately. Thusit
does not need to be ported.

* iocCorerequires a multithreaded environment.

OSI components are defined such that:

e The vxWorks implementation has minimal overhead
compared to vxWorks specific calls.

e The components can be implemented via a
combination of POSIX.1, POSIX.4 (POSIX Redl
Time), and POSIX Threads (pthreads).

For components that require a different implementation

for different environments, the implementation may be

via header and/or source files as long as user code can
code to the “prototype” header files.

2 OVERVIEW OF CHANGES

2.1 Replacements for Existing vxWorks and
EPICS Components

The following OSl libraries replace vxWorks libraries.
» osiClock - tickLib, sysLib
* osiFindGlobal Symboal, registry - symFindByName
e osinterrupt - intLib
e 0siRing - rngLib
e 0siSem - semLib
e osiThread - taskLib
» osiWatchdog - wdLib

Each osiXXX interface defines only the functions needed
by iocCore rather than all the features of the vxWorks
libraries.

2.2 Registry

vxWorks provides a function, symFindByName, that is
used to dynamically locate global data and functions.
This facility is unique to vxWorks and is not easily
recreated in other environments. Instead a facility is
provided to register and find pointers to functions and
structures. This leaves the problem of registering
everything currently located via cals to
symFindByName. This is solved via a Perl script that
generates a C function, which registers the record, device,
and driver support. dbLoadDatabase calls this function
after loading the database.

2.3 Build Environment

The build environment is different. The principal

features are:

» Each source directory has a single Makefile. This
builds for both the host and for all 10C targets.

e The new configuration files are located in
base/configure.

 The existing base/config is dtill present so that
existing applications still build without major
changes.

2.4 task params.h

This file, which defines vxWorks-specific options for
iocCore tasks is no longer part of iocCore. Instead
osi Thread provides generic options.

2.5 vx\Works Shell

If the target is not for vxWorks, the vxWorks target
shell is not available. ioclnit, dbLoadRecords, etc. must
be caled directly by main or the eguivalent. The
vxWorks debugging environment is not present although
anicer one using xgdb may be available.

2.6 Interrupt Level

The vxWorks intLock/intUnlock routines are an
essential part of base. For example any code, including
interrupt routines, can call calbackRequest. Most
operating systems do not allow such tight coupling
between interrupt routines and user processes.
osiinterrupt is provided to solve this problem. For
operating systems like vxWorks, in which everything
runs in a shared memory, multithreaded kernel
environment, an implementation of osiThread must be
provided. For other operating systems, e.g., winNT, Unix,
Linux, a generic version is provided. The generic version
uses a global lock, where global means global to the
process.

3 STATUSOF PORT

3.1 Work Completed

e All code except Channel Access, Sequencer, and
vxWorks-dependent device and driver support has
been converted to use the new libraries.

e Theregistry has been implemented.

e The example generated by makeBaseApp has been
successfully tested on vxWorks.

e A separate subdirectory base/src/vxWorks has been
created and all vxWorks-specific code moved to this
subdirectory. This makes it possible for existing
vxXWorks 10C applications to use the new system
with only minor changes to the applications.

3.2 Work Remaining

e Implement osiSem and osiThread for other
platforms. If the implementation is done via POSIX
(including POSIX Rea Time and POSIX Threads)
then many platforms can be supported. William
Lupton (KECK) has aready developed an apha
version.

e Convert Channel Access (client and server) to use
OSl calls. Thiswill be done by Jeff Hill (LANL).

e Convert the sequencer to use OSl calls. William
Lupton has already implemented an apha version.
Also the sequencer will be unbundled from base.

¢ Resolve problems about single thread vs multi
threaded environments.

e TEST TEST TEST

4 PROTOTYPE DEFINITIONS

For a particular operating system, each function may
be implemented as desired, but the final result must
appear to user code like the definitionsin this section. For
example, functions can be implemented via macros
defined in a header file that replace the generic header
file.

For each OSl definition, a vxWorks-specific version is
available that causes no or ailmost no performance loss vs
direct vxWorks calls. For all except osiSem and
osiThread, a generic version is supplied. osiSem and
osiThread must be implemented for each operating
environment. These can be implemented via POSIX
(including POSIX Real Time and POSIX Threads). Since
only osiSem and osiThread must be implemented for
each operating system, they are the only libraries that will
be discussed here.

4.1 0s8Sem

typedef void *semd;
typedef enum {
senTakeCK, senirakeTi meout
} senrakeSt at us;
typedef enum {
senEnpty, senful |
} semnitial State;

sem d senBi naryCreat e(
int initial State);
voi d senBi naryDestroy(semd id);
voi d senBi naryG ve(senld id);
senTakeSt at us senBi naryTake(sen d id);
voi d senBi naryTakeAssert(senld id);
senTakeSt at us senBi nar yTakeTi neout (
semd id, double timeCut);
senmTakeSt at us senBi nar yTakeNoWai t (senml d id);
voi d senBi naryFl ush(sem d id);

sem d semvut exCreat e(voi d);

voi d semVut exDestroy(sem d id);

voi d senmVut exG ve(sem d id);

senTakeSt at us senVut exTake(senl d id);

voi d senmVut exTakeAssert (sem d id);

senTakeSt at us senmVut exTakeTi neout (
semd id, double timeCut);

senTakeSt at us semVut exTakeNoWai t (
semd id);

voi d semvut exFl ush(senm d id);

Mutual exclusion semaphores
e Must implement recursive locking.

e Should implement priority inheritance and be
deletion safe.
For POSIX
* Binary can be implemented easily as a condition
variable.

e Mutex can be implemented via various POSIX
facilities. Takes careful thought. A pthread
mutex is not sufficient.

For vxWorks:
* the entire implementation of Binary and Mutex
isviamacrosin avxWorks specific header file.

On asingle-threaded environment

Mutex is implemented as though the caller always
has access to the resource.

Binary issues an error message and terminates if an
attempt is made to create an instance.

4.2 osiThread

#define threadPriorityMax 99
#define threadPriorityMn 0O

/*some generic val ues */
#define threadPriorityLow 10
#define threadPriorityMedi um 50
#define threadPriorityH gh 90

/*sone iocCore specific values */
#define threadPriorityChannel AccessClient 10
#define threadPriorityChannel AccessServer 20
#define threadPriorityScanLow 60
#define threadPriorityScanH gh 70
int threadGet Gsi PriorityVal ue(
int ossPriority);
int threadGet GssPriorityVal ue(
int osiPriority);

typedef enum {

t hr eadSt ackSmal | ,

t hr eadSt ackMedi um t hreadSt ackBi g
} threadStackSi zed ass;

unsi gned int threadGet StackSi ze(
t hr eadSt ackSi zed ass si ze);

typedef void *threadld;
threadl d t hreadCreat e(
const char *nane,
unsigned int priority,
unsi gned int stackSi ze,
THREADFUNC funptr,void *parm;
voi d threadDestroy(threadld id);
voi d threadSuspend(threadld id);
voi d threadResunme(threadld id);
int threadGetPriority(threadld id);
voi d threadSetPriority(
threadld id,int priority);
voi d t hreadSet Dest r oySaf e(
threadld id);
voi d t hreadSet Dest royUnsaf e(
threadld id);
const char *threadGet Nane(
threadld id);
int threadl sEqual (
threadld idl, threadld id2);
int threadl sReady(threadld id);
int threadl sSuspended(threadlid id);
voi d t hreadSl eep(doubl e seconds);
threadl d threadGetl dSel f(void);
voi d t hreadLockCont ext Swi t ch(voi d);
voi d threadUnl ockCont ext Swi t ch(voi d);
threadl d t hreadNameTol d(
const char *nane);

Thread priorities are assigned a value from 0 to 99. A
higher value means higher priority.

threadGetStackSize can be called to get one of three
default sizes. This should be done whenever possible.
Code can specify any size it desires, but such code is not
portable.

35

5 REGISTRY

iocCore currently uses symFindByName
dynamically bind the following:
record/device/driver support
The registration facility provides a type safe and easy
to use alternative to symFindByName.
subroutine record subroutines
An easy to use solution must be developed.
initHooks
A new implementation of initHooks is now provided.
It provides a routine initHookRegister. This MUST
be called by any routine that wants to be called
during initialization.
drvTS.c
This has been moved to base/src/vxWorks. Thus for
now it is only supported on vxWorks
Other hardware or vxWorks-dependent code.

to

Thus only the first two items need a solution.

The basic idea is to provide a registration facility. Any
storage meant to be “globally” accessible must be
registered before it can be accessed by other code.

A Perl script is provided that reads the xxxApp.dbd file
and produces a C file containing a routine
registerRecordDeviceDriver, which registers all
record/device/driver support defined in the xxxApp.dbd
file.

Functions are provided to register (registryADD) and
find (registryFind) a void pointer. Using these functions,
typesafe functions are provided to register:
record types,
device support, and
driver support.

6 ACKNOWLEDGMENTS

The changes to the EPICS build system for the iocCore
port have been made by Janet Anderson (APS) and Jeff
Hill (LANL). Janet made the final major set of changes
that were needed. Jeff had previously created operating
system indepenent libraries for severa EPICS
components used on workstations.

This work is supported by the the U.S. Department of
Energy, Office of Basic Energy Sciences, under Contract
No. W-31-109-ENG-38.

7 REFERENCES

A list of EPICS documentation can be found at:
http://csg.Ibl.gov/EPICS/RecommendedDocs.html

