
TANGO - AN OBJECT ORIENTED CONTROL SYSTEM
BASED ON CORBA

J-M.Chaize, A.Götz, W-D.Klotz, J.Meyer, M.Perez, E.Taurel
ESRF, BP220, Grenoble, 38043, FRANCE

Abstract

This paper presents TANGO1 - an object oriented control
system based on CORBA2. TANGOhas been developed at
the ESRF. All control points in TANGO are implemented
as methods or attributes of CORBA network objects (ser-
vants). Control actions are executed by invoking methods
on objects. Objects are served by device servers. TANGO
device servers can be written in C++ or Java. Device
servers can run on Linux, Windows/NT, Solaris, or HP-
UX. TANGOis fully compatible with the ONC RPC based
TACO [1] control systems. In this paper the TANGO idl
deÞnition, device pattern, database , naming service, event
service and scripting languages are presented. The present
status of TANGO and how it will be deployed in a TACO
control system will be reviewed.

1 INTRODUCTION

The task of building a control system in today’s world
has been heavily influenced by the ever increasing choice
of Commodity-Off-The-Shelf (COTS) products. Many of
the control problems (hardware and software) have been
solved and can be bought ready to use off-the-shelf. This
has advantages in terms of price, functionality and time-to-
be-ready. However the products have to be integrated in
order to form a control system. System integration is there-
fore one of the main tasks of a control system builder today.
TANGO has been developed with system integration as one
of its main design goals.
In TANGO system integration is achieved by wrapping.
Wrapping means inserting a layer of software between the
product to be integrated and the system in which it has to
be integrated. The wrapper layer runs on the product plat-
form and communicates with the control system via the
network. The wrapper software needs to be multi-platform,
network based and language independent. TANGO has
chosen CORBA as its COTS wrapper software.

2 WHAT IS CORBA ?

CORBA is a definition of how to write object request
brokers. The definition is managed by the Object Man-
agement Group (OMG [4]). Various commercial and
non-commercial implementations exist for CORBA for
all the mainstream operating systems. Implementations
which respect the CORBA 2.0 (and later) standard are

1TANGO - TAco Next Generation Objects
2CORBA - Common Object Request Broker Architecture

inter-operable over the network using the IIOP protocol.
CORBA uses a programming language independent defi-
nition language (IDL) to define network object interfaces.
CORBA defines a number of common services for vari-
ous commonly needed functions e.g. naming, events, trad-
ing. Language mappings are defined from IDL to the
main programming languages e.g. C++, Java, C, COBOL,
Smalltalk. For an excellent reference on CORBA with C++
refer to [2].
Which ORB to use ? At the ESRF we have tested vari-
ous free and commercial ORB’s. The commercial ORB’s
are very expensive in general and not all of them respect
the CORBA norm. A number of free ORB’s exist but they
do not all offer full CORBA compliancy plus support for
C++, Java and multi-threading. After trying out different
products we chose Orbacus from OOC [5] as ORB. It is
fully CORBA compliant, has C++ and Java support, multi-
threading, is free for non-commercial use and comes with
full source. In addition it is reliable and has good support.

3 TANGO PHILOSOPHY

Isn’t choosing CORBA enough ? CORBA has been de-
signed as middleware and therefore one could imagine that
the choice to base a control system on CORBA is sufficient.
Unfortunately not. CORBA is first and foremost a way of
defining objects and accessing them i.e. it does not treat the
problem of control systems specifically. Secondly it is very
rich and offers a large number of possibilities and services.
A control system has to limit itself to a subset of these in
order to ensure inter-operability. What interfaces and ser-
vices to use and how to use them is what makes up a local
control system’s philosophy and flavour. The TANGO phi-
losophy and its justification can be summarised as follows:

1. A single type of network object - all control objects
are of the Device type. This means only a single IDL
file and only a single type of object to support. All
control objects will be derived from Device. This en-
sures all objects support the same basic interface and
functionality. Support for multiple versions of the De-
vice object will be added by deriving new versions of
Device e.g. Device2.

2. Hide CORBA details from programmers - control sys-
tem programmers need only know about their specific
part of the system and not the details of network pro-
gramming. This is achieved by providing program-
mers with a Device pattern for implementing new con-
trol classes. Clients access network objects via an API

International Conference on Accelerator and Large Experimental Physics Control Systems

475

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

which wraps the CORBA specific knowledge required
to build up and maintain a connection to a server.

3. Support for control system communication paradigms
- this means providing synchronous, asynchronous
and event based communication.

4. Keep it simple and generic - simplicity and generality
have been favoured in order to keep TANGO applica-
ble to a wide range of problems and scaleable. Speci-
ficity is implemented at the Device level by deriving
a new control object and implementing it in a device
server e.g. ccd camera or insertion device

5. Use only freely available software - in order to col-
laborate with external groups expensive commercial
ORB’s and databases have been avoided.

4 IDL FILE

Seeing as there is only one interface to support there is only
one IDL file. The IDL file contains the following network
interfaces :

� Device - the basic interface of all control objects in-
cluding the database. Each Device has state. Actions
are performed on devices by executing commands
which pass one input parameter and return one output
parameter (one of the TANGO predefined data types).
Commands can be executed synchronously or asyn-
chronously. Asynchronous commands have to supply
a Callback object to receive the answer. Devices sup-
port a list of attributes which can be read or write. A
device can return general information about itself or
its state. Every device has a black box of the last n
commands and implements security.

� Callback - client object which will be called by the
server to return an asynchronous response. The call-
back has a handler method which is called when the
response is unpacked.

� Monitor - a system network object for monitoring de-
vices or attributes. Clients register their interest.

� Consumer - a client object for receiving events from a
monitor.

TANGO also supports some pseudo network interfaces.
Pseudo network interfaces are implemented only on the
client side and not in the server. The following pseudo net-
work interfaces are supported :

� GroupDevice - a client object for grouping Devices
and executing commands on a group of Devices

� GroupAttributes - a client object for grouping Device
Attributes of different Devices and reading and writ-
ing them.

A copy of the TANGO idl file can be found on the TANGO
web page.

5 DEVICE PATTERN

Device servers are written using the Device pattern (see fig-
ure 1). The aim of the Device pattern is to provide the

control programmer with a framework in which s/he can
develop new control objects derived from the Device class.
The Device pattern uses other design patterns like the Sin-
gleton, Command and Factory patterns (cf. [2]). The De-
vice pattern creates the following hierarchy of classes :
Command –> MyCommand : a class for each command
to implement based on the Command pattern. Each class
must implement theis allowed() andexecute() methods.
DeviceClass –>MyDeviceClass : a Singleton class per de-
vice class which creates a list of commands and stores them
in a vector. The derived MyDeviceClass has Factory meth-
ods for creating the list of commands and devices (retrieved
from the database).
Device impl –> MyDevice : device class implementing
the hardware access necessary for each command and all
device attributes in its methods and stores all device spe-
cific information.
Device impl –> DServer : a special instance of De-
vice impl which exists only once per server and imple-
ments commands necessary to stop, restart and administer
the server.

6 MULTITHREADING

Multithreading is an efficient way of implementing con-
currency. TANGO supports multithreading at two levels
- at the ORB level and at the server/client programmer
level. CORBA 2.2 distinguishes between single and multi-
threaded ORBs however it does not specify the underly-
ing threading policies in the case of multithreading. It is
up to each ORB implementation to define and provide its
own multithreading support. Orbacus provides a rich set
of multithreading models. Servers can use the blocking,
reactive, one-thread-per-client, one-thread-per-request or
thread pool model. Which model to use is specified when
the server starts up (via a command line option for exam-
ple). TANGO uses the reactive model for servers which im-
plement hardware access, and thread pool for servers like
the database which need to serve a large number of clients
simultaneously and do not have concurrency conflicts. At
the programmer level TANGO is thread-safe i.e. server and
client programmers are free to create threads as they need
them and make calls to other servers in these threads.

7 ATTRIBUTES + PROPERTIES

What are TANGO attributes and properties? In addition to
commands TANGO devices also support normalised data
types called attributes and properties. Properties can be de-
vice, class or attribute specific.
Why do we need attributes ? Commands are device specific
and the data they transport are not normalised i.e. they can
be any one of the TANGO data types with no restriction
on what each byte means. This means that it is difficult to
interpret the output of a command in terms of what kind
of value(s) it represents. Generic display programs need
to know what the data returned represents, in what units it

476

DeviceClass StepperMotor

Device_impl

FirstStepRate Steps

Attribute

Acceleration

CommandStepperMotorClass

MoveAbsolute MoveRelative Abort

is_allowed()

execute()

is_allowed()

execute()

is_allowed()
execute()

move_absolute()

move_relative()

abort()

is_allowed()=0

execute()=0

device_factory()=0

command_factory()=0

read()=0

write()=0

write()

read()read()

write()

read()

write()

device_factory()

command_factory()

attribute_factory()

command_inout()

state

Figure 1:Device Pattern Class Diagram (refer to [3] for
class diagram notation)

is, plus additional information like minimum, maximum,
quality etc. Attributes solve this problem.
TANGO attributes3 are zero, one or two dimensional data
which have a fixed set of attribute properties e.g. quality,
minimum and maximum, alarm low and high, engineering
units, description etc. They are transferred in a specialised
TANGO type and can be read or read-write. A device can
supports a list of attributes. Clients can read one or more
attributes from one or more devices.
TANGO device properties represent device specific infor-
mation like device description and device configuration
information like hardware addresses or for example first-
steprate, speed or acceleration for a stepper motor. Proper-
ties are stored in the database and can be retrieved, updated
or inserted via the database device server. Properties can
be any simple type or sequence of simple types.

8 DATABASE

TANGO uses MySQL [6] as the database for storing per-
manent information. Permanent information can be device
names and aliases, network addresses (IOR’s), list of de-
vices and their classes per device server, and properties.

3not to be confused with CORBA attributes which can represent any
data type

MySQL is a relational database which implements a subset
of SQL.
The following tables have been defined for TANGO :

� device - contains device names, aliases, IOR’s, class,
version, start and stop timestamp

� device properties - contains device specific properties
e.g. hardware addresses, device minimum and maxi-
mum

� class properties - contains class specific properties e.g.
default minimum and maximum

� attribute properties - contains list of predefined at-
tribute properties e.g. engineering units, attribute min-
imum and maximum

The database is accessed via a device server. The device
server sends SQL requests to the MySQL server to inter-
rogate or update the database. MySQL runs on many plat-
forms. Performance is not a problem (MySQL is one of
the fastest relational databases around). MySQL is free for
non-commercial use and comes with full source.

9 NAMING

Naming and finding network objects is a fundamental ser-
vice in any distributed system. CORBA offers a nam-
ing service which is hierarchically organised. TANGO on
the other hand uses a 6 field naming scheme - [//facil-
ity/]domain/class/member[/attribute.property]. Where fa-
cility refers to the control system instance, domain refers to
the subsystem, class the class and member the instance of
the device. Attribute and property provide fine grained ac-
cess to device attributes and properties. Because TANGO
has its own database it has its own repository for names.
Device names and network addresses (in the form of a
stringified CORBA IOR) are stored in the device table in
the database when the device server starts up. Clients
only need to connect to the database device server in order
to retrieve any device name. The database device server
is started on a known port and host as a named servant.
Clients connect to the database device server using an Or-
bacus extension which converts the port and host and name
into a CORBA network object4. Once the client has con-
nected to the database device server it uses the TANGO
naming service to retrieve the device IOR from the database
and build and maintain a connection to it. The TANGO API
hides the details of this two step bootstrapping mechanism.
Reconnection is managed as follows : if a server is restarted
the client gets a CORBA communication exception the first
time, from this point on every time it accesses the device it
requests the new IOR from the database and tries to rebuild
the connection until it succeeds. If the device is restarted
immediately then at most one request is lost. If the database
server is restarted then the named servant automatically re-
connects.

4in the future this might be replaced by a CORBA compliant boot-
strapping mechanism

477

10 DATA TYPES

What data types does TANGO support? TANGO supports
a fixed set of data types for transferring data with com-
mands and for attributes. All simple types and sequences of
simple types are supported. In addition TANGO supports
sequences of strings and longs, sequences of strings and
doubles and sequence of TANGO attributes. The CORBA
Any type is used to pack the different TANGO types and
pass them over the network.

11 MONITORS

Monitors keep registered clients informed of device events
(e.g. state changes) without the clients having to poll.
Clients register their interest in an event by sending a re-
quest to the monitor service. The clients have to provide
a Callback object which will be called when an event oc-
curs. System wide events i.e. available for all TANGO
devices, are state change, value changed, and alarms. De-
vice server programmers can add their own device specific
events e.g. counting stopped or buffer overflow. The mon-
itors will rely on internal polling and the device cache to
generate events. Monitors dispatch events to clients using
CORBA oneway calls. For the moment we have decided
against using the new CORBA Notify service for distribut-
ing events because there is no free implementation avail-
able. This might change in the future.

12 DEVICE CACHING

In a large control system (e.g. of 10 000 devices) running
on a large number of hosts it is necessary to provide fast ac-
cess to a large number of devices simultaneously to clients.
With the normal device access paradigm this is not possi-
ble because accessing the hardware of hundreds of devices
takes time even if all accesses are started in parallel (as is
the case for asynchronous calls). The solution to this is to
use cached values. For many clients a cached value which
is guaranteed not to be older than a certain time is perfectly
acceptable. TANGO has a device cache which is filled by
system pollers. Clients can choose to read the cached or
real value by toggling the source flag of a device.

13 API

If CORBA is a high level object broker why do we need
an API still ? While it is true TANGO clients can be
programmed using only the CORBA API, CORBA knows
nothing about TANGO. This means clients have to know all
the details of retrieving IORs from the TANGO database,
additional information to send on the wire, TANGO ver-
sion control etc. These details can and should be wrapped
in a TANGO API. The API is implemented as a library in
C++ and as a package in Java. The API also implements the
pseudo-network objects like Groups and switches automat-
ically between real, cached and other e.g. TACO, device

sources. The API is what makes TANGO clients easy to
write.

14 SCRIPTING

Scripting is still one of the most efficient and powerful
ways of doing rapid code development. TANGO proposes
to support scripting at two levels - at the device level and at
the client level. Scripting at the device level means down-
loading scripts to the device server which will be activated
and executed locally e.g. automating a startup sequence or
monitoring a slow device. Tcl will be supported as script
language. At the client level a number of well known
scripting languages will be supported e.g. Tcl, Python,
LabView, Matlab. All the scripting languages will have the
same generic interface to TANGO.

15 PLATFORMS

TANGO is supported on 4 platforms presently - Linux,
Windows NT, Solaris and HP-UX. All features of TANGO
are supported on all platforms. This means device servers,
the database and clients can run on all platforms. Frontends
run Linux (on VME or PCs) or Windows (on PCs). Clients
run on PCs, workstations or server machines.

Table 1:Performance - TANGO performance figures mea-
sured on Windows/NT on a Pentium III @ 450 MHz, Linux
on a Pentium @ 200MHz, HP-UX on an HP9000/735, So-
laris on an UltraSparc 1, network was Ethernet 10baseT.
Note the times presented here represent the minimum over-
head to trigger an action, the time to execute the action in
the server has to be added to this.

from - to platform transferred time
client - device Win/NT 8 bytes 0.9 ms
client - device Linux 8 bytes 1.7 ms
client - device HP-UX 8 bytes 3.0 ms
client - device Solaris 8 bytes 3.7 ms
client - device Linux 1 Mbyte 1.5 s
build connection Linux 1 device 10.0 ms

16 STATUS

TANGO is still being actively developed therefore not all
parts of TANGO described above are implemented. The
first device servers controlling simulated and real hardware
are running. The database device server is available and
the first simple clients (without the API) are working. The
TANGO gateway which provides TANGO clients with ac-
cess to the old TACO [7] device servers is running. The
next step is to implement device attributes, asynchronous
calls, monitors and interfaces to scripting languages. We
will evaluate using the Notify service for events and Asyn-
chronous Messaging for asynchronous calls.

478

17 EXAMPLES
What are examples of TANGO device servers ? They can
range from simple digital I/O, serial lines, stepper motors to
ccd cameras and plc subsystems. The first TANGO device
servers are an Oregon stepper motor controller for VME
and PC/104 on Linux, a serial line device server for PC/104
or PC under Linux, an OPC5 device server for talking to
PLC’s from Windows.

18 BACKWARDS COMPATIBILITY

How to deploy TANGO in the existing ESRF control sys-
tems ? The ESRF control systems are based on the pre-
decessor of TANGO - TACO. There are over 30 instances
of the TACO control system running the ESRF accelera-
tors and beamlines. The accelerator control system has al-
most 10 000 devices belonging to almost 200 classes and
hundreds of clients. Porting all the classes and clients to
TANGO is out of the question. In addition it must be pos-
sible to integrate TANGO servers and clients in a running
TACO system without shutting down the TACO control
system. Fortunately TANGO is very similar to TACO in
its basic concepts (device oriented access) and it is easy
to map TACO to TANGO and vice versa. By providing
gateways which translate from TANGO to TACO and from
TACO to TANGO it is possible to integrate new servers
and clients into the running system smoothly. The respec-
tive APIs switch automatically to use the correct protocol
and gateway.

19 ADDED VALUE

What have we gained by rebuilding TACO using CORBA?
Here is some of the added value brought by rebuilding
TACO using CORBA :

1. support for system events thereby providing faster
client access and reducing the network load

2. generic data access via attributes
3. a modern protocol (IIOP) which supports web-based

solutions
4. support for C++ and Java
5. immediate reconnection between client and server
6. support for scripting servers and clients
7. rebuilding TACO enables us to improve it based on

our experience e.g. implementing scanning in fron-
tends

What have we lost by rebuilding TACO with CORBA? Here
is some minus value brought by rebuilding TACO using
CORBA :

1. servers and clients require more memory e.g. the
shared libraries require a few megabytes compared to
hundreds of kilobytes in TACO

2. the new control system does not run on OS-9, the com-
mercial OS we are presently using on VME

5OLE Process Control

20 OPEN SOURCE
The TANGO project (like TACO) is anOpen Source
project. All code will be available free of charge and war-
ranty from our ftp site (follow link on web site [8]). Anyone
can download it, use it, and even collaborate on improving
it. Any improvements or bug fixes made will be incorpo-
rated into the next release.

21 CONCLUSION

Although CORBA has a steep learning curve and has a rich
set of services it is easy to use for building simple types of
network objects like Device which do not rely on any of
the CORBA services. The high-level of abstraction and the
C++ bindings succeed in hiding all details of network pro-
gramming. Performance of CORBA (overhead of a few ms
per call) is more than enough for an object oriented control
system. The paradigm of device oriented access has again
proved to be very powerful and adapted to the problem of
control systems. Although TANGO is not finished yet it is
already possible to write TANGO device servers and clients
and deploy them in the existing control systems. TANGO
offers significant improvements compared to TACO e.g. its
support for modern protocols (IIOP) and languages (Java,
C++), immediate reconnection, scripting. In the future new
developments and improvements e.g. scanning on fron-
tends, will take place only in TANGO and not in TACO
in order to encourage TACO users to move to the 21st cen-
tury.

22 REFERENCES

[1] ”Object Oriented Programming Techniques Applied to De-
vice Access and Control” by A.Götz, W-D.Klotz, J.Meyer
(ICALEPCS ’91, Japan 1991)

[2] ”Advanced CORBA Programming with C++” by M.Henning
and S.Vinoski (Addison-Wesley 1999)

[3] ”Design Patterns” by E.Gamma, R.Helm, R.Johnson, and
J.Vlissides (Addison-Wesley 1998)

[4] OMG home page - http://www.omg.org

[5] OOC home page - http://www.ooc.com

[6] MySQL home page - http://www.mysql.com

[7] TACO home page - http://www.esrf.fr/computing/cs/taco

[8] TANGO home page - http://www.esrf.fr/computing/cs/tango

479

