
CORBA BASED CONTROL SYSTEM WITH RTOS ON VME/CPCI

Toshiya Tanabe, Toshikatsu Masuoka, Jun-ichi Ohnishi, Yasushi Watanabe
and Masayuki Kase, RIKEN, Saitama, JAPAN

Abstract

R&D work on CORBA based control system for RIKEN-
RI Beam Factory (RIBF) [1] has been undertaken at
RIKEN. Various tests using RTOSes such as VxWorks
and pSOS running on VME or CPCI and corresponding
ORBs have been conducted to evaluate the performance.
This paper describes the methods and results of the test
and our future plan of RIBF control system.

1 INTRODUCTION
CORBA (Common Object Request Broker

Architecture) is the standard distributed object
architecture for an open software bus, which allows object
components created by different OSes and languages to
interoperate. It would make integration with legacy
controls easier, which is well suited for RIBF project as it
is an expansion of existing facilities. In recent years,
Java/CORBA applications for business environment have
been flourishing. However, the progress with CORBA for
embedded computing is slow. We have therefore
concluded that it is premature to completely replace
VME/CPCI on a RTOS with PCs for our project.
Therefore, as a part of R&D work for RIKEN RIBF
control system, we have conducted various tests of ORB
for RTOSes on VME/CPCI.

2 CORBA TEST ON VME/CPCI

2.1 General Description

The main purposes of our R&D are:
• To establish CORBA based communications

among different GUIs (created in C++
 and Java) and

VME/CPCI running different RTOSes.
• To estimate the total operational overhead due to

the use of CORBA.
• To confirm interoperability through Internet Inter-

ORB Protocol (IIOP) among different ORBs.
• To understand the deficiencies, if any.
Besides the interoperability test, the ORB used for all

components is chosen to be VisiBroker [2] due to the
availability for both VxWorks [3] and pSOSystem [4] as
well as its ubiquitous availability through Netscape
browser. Visual C++ 6.0 is used for C/C++ applications
and Visual Cafe for Enterprise Edition [5] for Java.
Figure 1 shows the system configuration for this R&D.

2.2 From Socket Programming to CORBA

A few GUI applications are made in C++ which utilize
conventional socket functions to communicate with
VxWorks running on a PowerPC604 based VME
(Motorola MVME 2600). There are a variety of VME
I/O boards with a VxWorks driver that we have installed
and tested their functions. Then some sources for each
layer are modified and compiled with links to CORBA
libraries. By using CORBA, one can discard routines for
socket functions which require detailed information on the
hardware characteristics on both sending and receiving
sides. The client which may not know the details of the
server simply invokes the server object to complete a two-
way communication. Table 1 shows a comparison
between two schemes.

Fig. 1: CORBA test system configuration

Table 1: Comparison on programming aspects between
socket communication and CORBA.

Socket CORBA

Program
Making

Define exact data
formats for send /
receive

As if one defined a
stand-alone function

Endian Endian problems for
binary transmission

CORBA absorbs
endians

Debug-
ging

Confirm the formats
on both sides

As if one checked
function calls

Program
Change

Modification required
on both sides

Treated as separate
objects

2.3 DII and Naming Service

Under normal circumstances for accelerator controls,
the interface information is known and static. Therefore,
Static Invocation Interface (SII) is adequate. Dynamic
Invocation Interface (DII) could be used in case the types

International Conference on Accelerator and Large Experimental Physics Control Systems

558

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

of parameters used in the programs are unknown. The
program of the client that uses DII will be more complex
because treatment must be described to look up the
argument of the server, return value, and so on
dynamically. As far as RIBF controls are concerned, DII
is deemed unnecessary. Naming service (NS) is useful in
case one kind of ORB is used for the entire system. For
comparison, the response times for various I/O boards
have been measured for these three different methods
(SII, DII and NS). Test routines are in the following: (a)
Server returns I/O values on the request of a client. (b)
Client invokes the object 100 times and the elapsed time
is measured. This routine is repeated 10 times to get
better statistics.

2.4 Interoperation Between Different ORBs

Besides VisiBroker, a free ORB (for non-commercial
use only) such as ORBacus[6], is used to evaluate the
interoperability among different ORBs. Interoperable
naming service is not available until CORBA 3.0 [7] so
one of the ways to get the object reference across different
ORBs is as follows: (1) Interoperable Object Reference
(IOR) is changed into the string, and a server-side writes
it in the file. (2) A client-side reads the file created on the
server-side, and returns a string to IOR. A file is
delivered with FTP, NFS, and so on. The example codes
for both the server and the client are given below.

Client Program(CORBA Product:ORBacus)
#define LOOP 10000
void main(int argc, char *argv[])

{
CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);

 const char* refFile = "ior.ref";
 ifstream in(refFile);
 char s[1000];
 float _rnumber;
 in >> s;

//String is being changed into the IOR.
CORBA_Object_var obj = orb -> string_to_object(s);

 Test_var test = Test::_narrow(obj);
 for(int i=0;i<LOOP;i++){
 _rnumber = test -> rnumber(); }

 cout << "last rnumber = " << _rnumber << endl;
 cout << "Hit any key for " ;
 cin >> s;
}

Server Program(CORBA Product:VisiBroker)
void main(int argc, char *argv[])

{
CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
CORBA_BOA_var boa = orb -> BOA_init(argc, argv);

 Test_var p = new Test_impl;
//IOR is being changed into the String.
CORBA_String_var s = orb -> object_to_string(p);

 const char* refFile = "ior.ref";

 ofstream out(refFile);
 out << s << endl;
 out.close();
 boa->
 impl_is_ready(CORBA_ImplementationDef::_nil());
}
Test_impl::Test_impl()
{
}
float Test_impl::rnumber()
{
 float _rnumber;
 // Set a random number between 0 to 10000
 _rnumber = abs(rand()) % 100000 / 100.0;
 return _rnumber;
}
 Turn around times (TATs) for different configurations

have been measured and compared. The method is as
follows: (a) Server returns a random number (float) when
it is called upon by a client. (b) Client invokes the object
10000 times and the elapsed time is measured. This
routine is repeated 10 times to get better statistics.

2.5 pSOSystem on CPCI with PowerPC 603e

One of our goals is to establish heterogeneous
environment in accelerator controls. Therefore, a RTOS
other than VxWorks should be tested. pSOSystem has
been chosen this time due to the availability of ORB,
especially VisiBroker. A compact PCI CPU board
(AVAL DATA ACP-100) [8] is used as a main controller.
CPCI-DIO board from the same manufacturer [9] as the
corresponding VME board is installed for comparison.
Unfortunately, numerous unforeseen problems prevented
us from completing this test in time for publication.

3 TEST RESULTS

 3.1 Measurement of Response times for I/O
boards

 In this test, for the client, Windows-NT4.0 is used for
the OS and Visual C++6.0 is for the compiler. For the
server, VxWorks 5.3.1 running on PowerPC604 with C++
as a compiler are employed. VisiBroker is used for both
the client and server. Interface Definition Languages
(Idls) used for each board is in the following:

 /* for AD Board */
 interface Ad_Board {
 short Ad(out string Str_Ad); };
 /* for DA Board */
 interface Da_Board {
 short Da(in string Str_Da); };
 /* for DIO Board */
 interface Dio_Board {
 short Di(out string Str_Di);
 short Do(in string Str_Do); };

559

 Table 2 shows the measurement times in msec for
different methods. It seems that rather large fluctuation in
response for socket communication is due to the use of an
event-driven socket library (CAsynchSocket). Some
events not related to socket communications might have
occurred during transmissions. As for DII cases, this
particular test somewhat sacrifice the generality. The
server idls are given a priori so that the time which DII
searches for the interfaces is shortened.

 Table 2: Response Times for Various I/O Boards [msec]

 3.2 Interoperation

 The results of interoperations among different ORBs
and OSes are shown in Table 3. The numbers with an
asterisk indicate that a VisiBroker function utilizing
interprocess communication is used. So far only
ORBacus for java has been tested for java/CORBA
implementation. JDK 1.2 has been used for the
evaluation. It suggests that java client for this particular
ORB is approximately 2.5 ~3.5 times slower than C++
implementation for the same task. It is yet not certain that
variations in response among different OSs are due to
those in hardware performance or in software design. It
appears that VxWorks as a server gives smaller
fluctuations in response than other OSs as expected for
RTOS.

 Table 3: Response times Matrix for Various ORBs and
OS’s (Average [Std. Dev.] in µsec). Asterisked numbers
using IPC are 446 and 177µsec, respectively.

 For comparison, the times using socket programming are
shown in Table 4. This time, instead of the event driven
socket library (CAsyncSocket), winsock.dll is used to
measure genuine elapsed time for socket communication.

 Table 4: Response Times for socket communication

4 FUTURE PLANS
It is now preferable to create GUIs for OPI in java

because of its portability among different platforms.
Sharing codes with other laboratories is one of the most
important benefits of using Java/CORBA. Visual Cafe
has been tested to create GUIs using beans component.
We also plan to test more Java implementation of ORBs
in both as a client and a server to augment the matrix for
interoperation.

Introduction of CORBA 3 opens possibility to use
MinimumCorba and RealTimeCorba for embedded
systems. Interoperable naming service is now standard
and could be used for object referencing in heterogeneous
systems.

Object oriented database management system
(OODBMS) may replace relational database management
system (RDBMS) for CORBA based accelerator controls.
Objectivity/DB for linux [10] is being tested for future
evaluation.

5 CONCLUSIONS
It has been shown that replacing socket communication

with a CORBA layer significantly improves manageability
of accelerator controls.

There seems to be no significant problem associated
with VisiBroker on VxWorks. For pSOS version, there
seem to be more problems, but it may also be due to our
lack of experience on this OS so far.

Interoperability between ORBacus and VisiBroker is
found to be satisfactory and response times do not vary
much with different combinations. Without using product
dependent CORBA services, flexibility of the system
codes can be improved at the expense of finding the way
to share the stringified objects.

It is certain that CORBA is useful for integrating legacy
controls for RIBF

REFERENCES
[1] Y. Yano and et al., Proc. of PAC 97, 930.
[2] http://www.borland.com/visibroker/
[3] http://www.windriver.com/products/html/vxworks.ht

ml
[4] http://www.isi.com/
[5] http://www.microsoft.com/
[6] http://www.ooc.com/
[7] http://www.omg.org/
[8] http://www.avaldata.co.jp/jpn/index.html
[9] http://elc.aska.or.jp/electro/index.html
[10] http://www.objectivity.com/

560

