
GUI AND I/O INTERFACE FOR COACK-II

K. Nigorikawa, I. Abe, J. Kishiro, S. Kurokawa, T. Kosuge
High Energy Accelerator Research Organization(KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

M. Mutoh
LNS Tohoku Univ. Taihaku, Sendai, Miyagi, Japan

Abstract

COACK-II[1,5] (Component-ware Oriented Accelerator
Control Kernel) is a project currently under development
at KEK1. It is a generalized control kernel in an
accelerator domain based on COACK phase-I, which was
developed by the KEK PF Linac group. The conceptual
system configuration of COACK-II and various test
results are described in this paper.

1 INTRODUCTION
The control software for accelerators or large-scale

experimental equipment was occasionally developed
independently and sometimes dedicated to specific
equipment. Based on an object-oriented analysis of
control system fundamentals, it was concluded that in
spite of the difference in size or architecture of the control
software, there exists a common flow of commands or
data. The control commands to the accelerator magnet, for
instance, come from the control client to the I/O interface
module through a command exchanger, in which
command security, examination and assignment of the I/O
module address and logging into the database etc. are
performed. The magnet current or voltage data is returned
to the client GUI, and also recorded into the database. In
this example, except for the realization method, the
fundamentals are security examination, addressing, and
logging and recording of the command and data. In the
object-oriented model, these are private procedures and
the contents of the command and data are public
properties. The magnet control is easily classified as a
“Magnet object”.

2 COACK-II
The COACK-II project is a new accelerator control

kernel development based on Object Oriented Modeling
and an extension of that to the COM (Component
Oriented Model). In COACK-II, the fundamentals of the
accelerator control software are constructed using
Component ware, and entire control programs are
assembled in the Component Oriented architecture. The
control components are implemented not only in the
kernel itself, but also in the communication between the

1 This project supported by JST.

client GUI and the kernel, and between the kernel and the
I/O device. In the control network the many distributed
I/O devices are easily implemented in a single kernel by
employing DCOM[2] (Distributed Component Object
Model).

3 GUI AND I/O IN THE COACK-II
The control software usually implements a character-

based code according to specially developed I/O access
commands. The software developers need to know at least
the command provided by the system designer or the
hardware developers. By contrast, COACK-II is designed
to assemble all of the control commands based on an
object-oriented method. For instance the objects are
classified as “Magnet” and “Vacuum” etc., each of which
contains the data and set-up procedures for the concerned
devices. The objects are also implemented in
COM/DCOM as a communication procedure. The
COACK-II kernel is mainly implemented by employing
the component-oriented method. This allows the main
flow of data and commands to the accelerator object
through the kernel to be implemented via a COM/DCOM
channel. The fundamental components in the kernel
communicate with each other through this channel.
Transmission of the control command is an equivalent
action to change the property of the concerned object. The
COM/DCOM architecture provides automatic

Figure 1: COACK-II

COACK-II

GUI

DCOM DCOM
Socket

I/O

Active XDCOM DCOM

DB

WEB server

Component
(COM/DCOM)

International Conference on Accelerator and Large Experimental Physics Control Systems

538

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

communication between the kernel components and the
user GUI presentation frames. The component-ware
architecture makes it possible to build up a complicated
control GUI by dragging and dropping the components
that are already implemented in the system.

As a result of the many types of I/O devices in an
accelerator control system, the software developer must
implement many device handlers. To avoid this frustration,
COACK-II components are designed to include the
communication channel to the currently available SCADA
software.

4 GUI AND I/O CONNECTION TO
COACK-II

4.1 Connection Protocol

The connection between the user GUI and COACK-II
is implemented using COM/DCOM. COACK-II also
incorporates a TCP/IP Socket, thus allowing the
implementation of multiple platforms.

The string-command goes through the network from the
user GUI and COAKC-II, in which a class, object and
property name are formatted specifying the components in
the control network. COACK-II incorporates a Message-
exchanger to decode this command and inheritance for the
component, which corresponds to this command. The
Message-exchanger examines the registered component in
the system, and transmits the command to the instance, or
relays a message to the user GUI if the component is not
available. Because these communications are
encapsulated by DCOM, the user or developers need not
know the command. Figure 2 depicts the command flow
in COACK-II.

4.2 Implementation of the ACOP

For the GUI layer, we examined the ACOP[3]

(Accelerator Component Oriented Programming) system
developed at DESY/CERN. ACOP demonstrates
excellent performance on our COACK-II project. ACOP

also has the advantage of being able to be downloaded
from the Internet. ACOP is the pioneer of component-
ware for accelerator control systems.

4.3 Implementation of SCADA

SCADA (Supervisory Control and Data Acquisition)
software is strongly supported in COACK-II, because this
software is commercially available to every control
developer. SCADA not only supports direct access to the
I/O devices, but is also a means of GUI. SCADA is used
in COACK-II as local intelligence in the I/O layer, which
provides the possibility to develop local control
independently of the whole system. SCADA local control
is implemented as a local component using ActiveX. This
configuration explicitly smears out the varieties of I/O
devices and accelerator objects in COACK-II.

4.4 DCOM performance

Using DCOM as the protocol for network
communication enables the components to be distributed
in the network. DCOM is not a simple communication
protocol, but it can be superior to the network, which
contains various security checks of the distributed
components, and so on. We have measured the
communication speed on the network compared to a
simple TCP/IP Socket using WindowsNT (Pentium III
450MHz, 100Base-T). A formatted command, as
described above, was transmitted 10,000 times to the
server computer through Fast Ethernet, and the transfer
time was measured. The results are given in table 1.

Using DCOM, a single command can be transmitted in
3.6ms, approximately seven times longer than the same
command transmitted via a TCP/IP Socket. The
communication speed is fast enough to transfer the
command to COACK-II. DCOM is itself a network-
oriented communication, which includes some types of
checks that DCOM is reliable enough to be used in the
COACK-II project.

4.5 Communication test

The program shown in figure 3 was created for a
communication test between the GUI, the I/O and
COACK-II. This program also tested the DataBase. The
GUI was written in Visual Basic and implemented using
ACOP. Figure 4 shows the GUI. This software and the
DCOM-Server communicate using DCOM; the I/O and
DataBase communicate through the DCOM-Server.

LabVIEW was introduced for the I/O layer to control
many devices. LabVIEW and COACK-II also

Figure2: Message-exchanger

Table1: Connection speed
Protocol Speed (mSec)

TCP/IP Socket 0.49
DCOM 3.58

DCOM

To I/O To/From DataBase

COM

COM COM

COM

COM

Me ss age-e xch an ge r

539

communicate using DCOM. Figure 5 is an example of I/O
control using DCOM.

Through the use of ActiveX, DCOM communication
can be implemented into LabVIEW.

The DCOM-Server in this test program is a small-scale
COACK-II.

The test result showed a fast response and high level of
reliability of device control over the network.

 5 THE NEXT PLAN
Through the use of standardized OPC[4] (OLE for

Process Control), COM and ActiveX technology, I/O can
be connected.

Therefore, it can be said that the conditions under
which various I/Os connect to COACK-II will be widened.

6 SUMMARY
A new from of connection between the GUI and I/O

has been proposed. The actual connection between
COACK-II and I/O was demonstrated, and the statistical
results presented. Remote control using the network was
easily realized and satisfactorily performed.

Because COACK-II was created from component-ware,
it is easy to add new functions dynamically. Furthermore,
multiple connections of SCADA software and expansion
by OPC can be expected.

REFERENCES
[1] I.Abe, et al., “COACK-II Project on Accelerator

Control Kernel Development”, this conference.
[2] Guy Eddon, et al., “Inside DCOM”, Microsoft Press
[3] P.Duval, “Using ACOP in HERA Control

Applications”, PCaPAC’99, Tsukuba (1999)
[4] http://www.opcfoundation.org/
[5] http://ninja.kek.jp/COACK2/

Figer3: Test program

Figure4: Window of GUI

Figure5: Panel of I/O

DCOM-Server MS-S QL

LabVIEW (I/O)

GUI

Small scale COACK-II

DCOM

DCOM

540

