
HERA CONSOLE APPLICATIONS BASED ON ACOP

Philip Duval and Honggong Wu, DESY, Hamburg, Germany

Abstract

 The ACOP (Accelerator Component Oriented
Programming) ActiveX control is now used in a wide
variety of console applications in the control of HERA
and its pre-accelerators. It has proven itself to be a
versatile graphics control in its own right, with an
intuitive interface for the developer. Its primary
function, however, has been to provide a common
Application Programmer’s Interface (API) for three
rather different data exchange mechanisms found in
accelerator control at DESY. These include the TINE
data exchange protocol, MKI3 data exchange, and
Channel Access. At DESY, ACOP is primarily used in
console applications programmed in Visual Basic 5.0
running on Windows NT. Nevertheless, there are a
number of applications which use ACOP in MS Visual
C++, Excel and HP VEE for example. In all cases, the
ease in programming in a high-level language such as
Visual Basic with components has proven to be a
marked advantage. We report here on our first year’s
experience using ACOP at DESY.

1 INTRODUCTION

 The ACOP[1] ActiveX control is based on the
Microsoft™ COM (Component Oriented Model)
foundation, which implies both binary reusability and
dynamic linking with its container. Just as important, it
offers a language-independent interface. The most
popular ActiveX control containers are typically Visual
Basic and other Visual Basic-based applications such
as Excel, although integration in Visual C++ and
Visual J++ for instance is also straightforward. Some
other Win32 applications, such as LabView and HP
VEE, can also act as ActiveX containers.
 Primarily, ACOP.OCX is a client-side component
and offers an interface for accessing front-end devices.
Secondly, the object offers a control system oriented
graphics package for on-line data analyses. This
package has been streamlined for efficient data-
rendition at high frequency in a number of styles of
paramount interest to the client-side applications
running in the control room.
 The ability to include a component with a well-
known interface inside the development application of
choice has great advantages over integrating say a class
library written in C++. The latter can of course be
accomplished. However, there are typically different
integration strategies among target applications (e.g.

the interface to methods and properties in LabView
will be accomplished differently than in Visual Basic),
and the interface might turn out to be language specific
(i.e. only works in C++ unless a C-wrapper exists) or
require a knowledge of C++. A COM component on
the other land is language neutral and can be
immediately plugged into any application that supports
ActiveX.

 In the ActiveX world, components are “self-
contained, programmable, reusable, language-neutral
pieces of code easily pluggable into applications.” [2]
Furthermore, components expose properties and
methods, fire events, and are unequivocally identified
through name and/or ID.

 The ACOP strategy violates the “self-contained”
ansatz to a certain extent, in that the interface to
ACOP.DLL is required. ACOP.DLL itself is likely to
require secondary DLLs in order to communicate with
a control system(s). However, if installed properly,
this “violation” is well hidden from the user.

2 ACOP.OCX

 ACOP.OCX is the binary ActiveX control, which
can be downloaded and installed as is. It provides a
client-side component interface divided into two
categories: data acquisition and data rendition. The
interface to ACOP.DLL is largely concerned with data
acquisition and highlights the facility-dependent
development which must take place in order to benefit
from ACOP. The data rendition aspect of ACOP is
self-contained within ACOP.OCX to the extent that
control-system specific format types are not used in the
drawing methods (If they are, then ACOP.DLL will be
queried for pertinent information).

 The developer interfaces to ACOP by setting
properties of, calling methods of, and responding to
events of ACOP.OCX. We discuss the data acquisition
and data rendition aspects separately below.

2.1 Data Acquisition

 The settable data acquisition properties
DeviceName, DeviceProperty, AccessRate,
AccessMode, and AccessProtocol are all passed
through ACOP.OCX to ACOP.DLL as non-fixed
length strings. So any string parsing or interpretation

International Conference on Accelerator and Large Experimental Physics Control Systems

529

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

that takes place, occurs in ACOP.DLL and reflects the
control-system dependent implementations there. The
AccessProtocol property is designed to specify the
control system protocol. At DESY, ACOP provides a
common layer for the TINE protocol [3], the MKI3
protocol [4], and Channel Access [5]. Therefore, this
parameter can be “TINE”, “MKI3”, “CA”, or
“AUTO_DETECT”. The AccessRate, although passed
as a string, is converted to an unsigned long value
representing milliseconds in the DESY
implementation. This value also serves as a timeout
parameter for simple READ or WRITE requests.
AccessMode is used to specify the nature of the data
acquisition (at DESY: “READ”, “WRITE”, “POLL”,
“REFRESH”, “RECEIVE”). The DeviceName
property follows the naming convention:

 [//<facility>/]<device server>/<device>

 For instance “//HERA/BPM/WL197” or simply
“BPM/WL197” (using the default facility) targets
device WL197 from the BPM sub-system.
DeviceProperty follows TINE conventions and
reflects the property to be requested from the device in
question. Channel access names can be specified either
as one long string in DeviceName or split between
DeviceName and DeviceProperty as per TINE
convention.

The remaining settable data acquisition property
Grouped is a boolean value which governs the behavior
of event notification when more than one data link is
bound to a particular control.

The above provides a comfortable set of data
acquisition properties which can completely specify the
data request. To be sure, one could argue for taking a
narrower or wider approach. However, most object-
based or object-oriented control systems make use of
the above elemental descriptions in making a data
request.

Read-only data acquisition properties include Status (a
string value containing the data acquisition status) and
Timestamp (the unsigned long UNIX timestamp
associated with the data acquisition).

The principal data acquisition methods are Execute()
(synchronous) and OpenLink() and AttachLink()
(asynchronous). All three of these methods utilize two
(optional) data sets, a primary set and an extended set,
so that the argument list takes the form of:

 [data,] [len,] [type,] [dataEx,] [lenEx,] [typeEx].

All arguments are optional, which means that they are
passed to ACOP.OCX as OLE Variants. This makes
life very easy for Visual Basic Applications, where an
optional argument is simply omitted. The difference

between the two asynchronous calls OpenLink() and
AttachLink() is that the latter binds (attaches) the
remote data to the addresses passed in [data] and
[dataEx]. Thus these parameters must be globally
available. OpenLink() on the other hand does no such
binding. Therefore, when an event notification arrives,
it is necessary to use the secondary call GetData(data,
[dataEx], [hLink]) to actually obtain the acquired data
into the application. At DESY, the extended data set
[DataEx] quite generally refers to input data sent to the
front-end server, where as the primary data set [Data]
refers to the output data, returned from the front-end
server. We note here another feature of ACOP, namely
that if the data elements [Data] or [DataEx] represent
fundamental OLE data types (such as arrays of shorts,
longs, floats, or doubles) then the parameters [len] and
[type] may be safely omitted. In such cases, the
content of the elements will be scanned to determine
the array length and the data type. If special user-
defined data types are used, then these secondary
parameters must be supplied, in which case
ACOP.DLL is queried as to the nature of the data type.

As intimated above, the asynchronous calls fire an
event when incoming data arrive at the client-side. The
ACOP event that is fired in this case is the
Receive(hLink, StatusCode) event. When this event is
fired, the client program can check the StatusCode for
success and the link handle in case more than one data
links are bound to the same control.

ACOP.OCX passes the data acquisition parameters
blindly to ACOP.DLL, whose duty it is to redirect the
request to the appropriate control system.

2.2 Data Rendition

The data rendition aspects of ACOP are indeed self-
contained. The idea is to offer a simple set of display
tools for the most common categories of data display.
This includes for instance displaying data arrays as
traces or histograms and offering various zooming and
scrolling possibilities. We shall not go into any great
detail here as the details are many, but instead refer the
reader to the ACOP documentation from the ACOP
web page. We note only that, once again, a good many
of the parameters in the display methods are optional
and in decreasing order of frequency of use.

3 ACOP.DLL

In order for ACOP.OCX to work properly, ACOP.DLL
must exist on the path, and export the following
interface routines:

void WINAPI InitAcopDll()
long WINAPI DevRequest()
long WINAPI QueryDefaultAccessProtocol()

530

long WINAPI QueryDataBlockSize()
long WINAPI QueryStockAccessModes()

We shall not go into the details of the calling
arguments here. Suffice it to say, that such details are
covered in the ACOP documentation, and that a sample
ACOP.DLL with source code is provided in the ACOP
download package. It is then a matter of adapting the
sample DLL to the control system protocol(s) in
question.

4 CONTAINERS

The principal development language for console
control applications at HERA is Visual Basic. ACOP
has been seen throughout the past year to be
wonderfully suited to this environment. Useful control
applications can literally be written in a matter of
minutes. This is also true of applications which use
VBA (Visual Basic for Applications) as a macro
language, such as Excel. High-level development
environments such as HP-VEE™ and LabView™ can
also easily incorporate ACOP, which has been a
considerable help to control engineers.

Microsoft Visual C++ (MSVC) can likewise act as a
container for ACOP, although here, its use is not as
straightforward as in the previously mentioned cases.
The reason for this is the use of OLE variants in most
of the ACOP method calls. Whereas in the higher-
level containers, type-casting into variants is automatic,
and “optional” parameters can be omitted, in C++,
OLE variants must be specifically allocated and
assigned, and “optional” parameters must be passed as
empty variants. This makes MSVC a somewhat
cumbersome container for ACOP, but it can
nonetheless be used, as is used in several applications
in HERA control.

5 CONCLUSIONS

ACOP has an enthusiastic following at DESY as
concerns both its data acquisition and its data rendition
capabilities. Furthermore, it has been seen to integrate
seamlessly into a number of popular container
applications such as Visual Basic, Excel, HP VEE, and
LabView, all in common use at DESY. As the
standard desktop workstation as well as the standard
HERA console are PCs running Windows NT, ACOP’s
current limitation to Win32 does not pose any
significant development problem. As ActiveX
becomes available on non-Windows systems, it is
hoped that ACOP will respond with cross-platform
implementations as well. In the mean time, most
control physicists and engineers are now able to
trivially access the control system of choice

(independent of protocol), and do so from their favorite
development environment.

REFERENCES

[1] I.Deloose, P.Duval, H.Wu, “The Use of ACOP
Tools in Writing Control System Software”,
Proceedings ICALEPCS’97, 1997.
[2] Esposito, D., “Writing COM Objects with
Scripting Languages”, Microsoft Developer Network
News, Vol. 7, No. 6, 1998.
[3] P.Duval, “TINE: An Integrated Control System for
HERA”, These proceedings.
[4] Ruediger Schmitz, “A Control System for the
DESY Accelerator Chains”, Proceedings PCaPAC’99,
1999.
[5] see: J.Hill, “Experience with PC Based EPICS IO
Controllers”, Proceedings PCaPAC’99, 1999 for
references.
[6] http://wwwps2.cern.ch/acop,
http://www.desy.de/hera/controls/acop

531

