
MODULAR FUNCTION UNITS FOR EFFICIENT BRIDGING OF HIGH
SPEED NETWORKS AND CONTROL BUSSES

M.Weymann, L.Vivolo, F.H.Worm,
Creative Electronic Systems,

70 Route du Pont-Butin, CH 1213 Petit-Lancy 1/Geneva, Switzerland
email: ces@ces.ch, web: http://www.ces.ch

Abstract

CES VME PowerPC based boards can control up to 6
PCI Mezzanine Cards (PMCs), allowing to build compact
and powerful systems for accelerator control as well as for
aircraft test and simulation.

One or more of the PMCs attached to the VME board
can be a Multifunction Computing Core (MFCC). It
combines a PowerPC CPU with a user programmable I/O
interface and can be used to increase the CPU power of
the system.

The MFCC allows to scale CPU power as network and
control interfaces are added to the system. The MFCC has
already been used to control ATM, the same techniques
can be used to add other I/O channels (e.g. WFIP) without
additional load to the central CPU.

1 INTRODUCTION
Building a control or data acquisition system always

involves integration of CPUs, busses, I/O interfaces as
well as operating system and application software. The
functionality of these systems must be maintained for
more than a decade – much longer than the typical
evolution cycle of modern microprocessors or operating
systems. One successful approach to this challenge is to
build a system out of functional units that interact with
each other across well-defined interfaces.

2 FUNCTIONAL UNITS
Functional units are subsystems which include

hardware, system software and application software with
a well-defined interface to the rest of the system. They
may evolve independently of other components in the
system as long as this interface is maintained.

A crucial element in constructing these interfaces is the
use of standards. Standard busses such as PCI, VME or
CPCI, proven real time operating systems such as
LynxOS, VxWorks or Chorus and standard I/O and
network interfaces such as SCSI, ATM, Ethernet
(10 Mbit/s – 1 Gbit/s), PCM, MIL 1553, WFIP and others.

2.1 Example: An Avionics Test System

As example of how a system of functional units may
evolve, consider a test system for avionics equipment
(IENA [1]). One subsystem reads data from PCM,
ARINC 429 or MIL 1553, formats the data and delivers it
via ATM to another subsystem that records the data via
SCSI. Acquisition of each of the front-end busses can be
considered as a functional unit of its own, collecting data
and sending them to ATM would be another functional
unit, ATM reception and recording still another one.

In IENA terminology, the first two types of functional
units constitute level N3, the last type constitutes level
N4.

pcm

arinc429

mil Std 1553

N3 N4
timer irig-gps

rs232
atm

Datation

Figure 1: IENA. Avionics data acquisition system

Prototyping of the system started in 1994 (without
ATM and recording) using MIPS R3052 based VME
processor cards to implement the functional units for
acquisition and data collection. A full prototype was
installed in 1997, still keeping the MIPS based VME
boards for acquisition, but using PowerPC based VME
CPU boards together with ATM and SCSI PMCs for data
collection and recording.

Evolving from this prototype a first implementation of
the final system will start operation early 2000. A
functional unit for acquisition will be a combination of a
PowerPC based VME board (RIO2), a PMC carrier (PEB)
and up to 4 MFCC [2] PMCs. The front-end FPGA of
each MFCC is used to decode PCM data, which are then
collected by an acquisition process running on the MFCCs
CPU under LynxOS. For data collection and recording we

International Conference on Accelerator and Large Experimental Physics Control Systems

350

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

keep basically the same hardware configuration that has
been used in the prototype.

In short, starting from the first prototype, the system
evolved through several generations of microprocessors
(R3052, PPC604@100MHz-PPC604r@300MHz) several
generations of operating systems (TC/IX, EP/LX,
LynxOS v2.3 – LynxOS v3.01). Each step came with
considerable performance enhancements but kept the
overall functionality of the previous generation.

2.2 Interfacing functional units

Two paradigms are widely used when interfacing
multi-processor systems:

• Shared memory systems, relying on transparent,
memory-mapped access with or without DMA.

• Network or message oriented systems.

Traditionally, shared memory systems present lower
latencies and, if efficient DMA mechanisms are available,
may use almost the complete bandwidth of the bus on
which they are implemented. Message based solutions can
cover a much wider range of hardware implementations,
at the expense of a protocol overhead that increases
latencies and limits the fraction of bandwidth available to
transport data.

Given that CPU power has increased much faster than
access to memory not to mention external busses, the
overhead induced by CPU intensive protocols tends to
become less important. On the other hand, it pays off to
invest considerable CPU time in determining the most
efficient way to transport data.

 With the MFCC, CES has been faced with the
challenge to provide a tool that allows to interface systems
build from several high performance CPUs, coupled via
PCI, PVIC [3], VME or CPCI. This tool should be easy to
use, scalable – adding new CPUs should be possible
without changing the structure of the application, and it
should use the available hardware features in an optimal
way.

3 MULTI-PROCESSOR SUPPORT
The MFCC does not have console or network interfaces

of its own. It is coupled to its host only via its PCI bridge
which renders its memory dual-ported between PCI and
CPU and provides two sets of FIFOs and a DMA
controller. It was clear that porting an operating system
like LynxOS or VxWorks to the MFCC would imply an
IP emulation across these resources.

Given the considerations above, we decided to aim at a
tool with a much wider functionality. In the resulting
system based on channel connections, IP emulation is just
one particular application using the underlying channels.
POSIX Semaphores and shared-memory mechanisms are
other applications.

3.1 Channels

Channels are bi-directional links between two
processes. A channel is established if two processes
connect to the same port which may either be an explicit
address (host number, CPU number) or a symbolic label.
The number of open channels in a system is basically
unlimited.

Once a channel is established, each process can write
data to it and read data from it. The system guarantees that
all data are delivered. Reading from a channel blocks until
the number of bytes requested has been received or an
error is detected (timeout or disconnect). Writing to a
channel blocks until all data written are delivered to the
destination or an error is detected.

 A process may listen on a port to find out if another
process is connecting to this port. It may also select
among several channels the one who currently requires
service.

A channel disappears when both processes disconnect
from it Read or write operations on a channel will return
an error if the connection has been broken (or not yet been
established).

P
M

C

2
P

M
C

1

P
M

C

3
P

M
C

4

SCSI II
I

ATM

DISK
RAID

AIT

P
M

C

2
P

M
C

1

RIO2 RIO2 PEB

PCM

PCM

SCSI

ATM
PCM1

PCM2

Data
collection

+
ATM send

SCSI

VME

ATM

PCI PCI

Mem
+

CPu

Mem
+

CPu

PCM

PCM

Figure 2: Channels connecting functional units

3.2 Applications

The IENA system cited above is one of the first
applications using this channel architecture. Channels are
used to link acquisition processes running on an MFCC to
a data collection process running on another RIO2. Using
labels, the data collection process could just as well be run
on the MFCC itself or on the RIO2 carrying the MFCC.

Channel connections by label may also be used to build
a dynamically re-configurable system. A server process
that listens to connections on a given label may be shut
down and moved to another processor. Client processes
connected to it will be notified of the shutdown and can
reconnect once the server is reconfigured.

3.3 Implementation

Channels are implemented using a combination of
message and shared memory mechanisms. FIFOs (both on
the RIO2 and on the MFCC) are used to notify the
destination that a message arrived. The message body is

351

passed using either programmed I/O or DMA according
to configuration choices and available hardware. Data are
only copied once, there is no intermediate copy into driver
or network buffers.

4 THE NEXT STEPS

4.1 MFCC based functional units

Using the flexibility offered by the MFCCs front-end
FPGA, a whole family of high performance I/O interfaces
will be implemented. Current developments include the
PCM (IRIG 106-86) interface (538x) developed in
collaboration with Aerospatiale and a MIL 1553 /
STANAG 3910 interface designed at DASA. A functional
unit consisting of a RIO2 and two MFCCs can handle one
MIL 1553B (BC/mRT) and one high speed STANAG
3910 channel in a single VME slot.

Together with the PCM 5367, a functional unit is
developed which is able distribute central timestamps with
� �� �������	
�� �
�� ���� ����� ���� ���
���
�� �� ������
time counter synchronized via a 1 Hz top with an external
time reference (typically GPS). It synchronizes via a dual-
redundant serial connection (P2 or front-panel) the
corresponding counters in the FPGA of the acquisition
PMCs. In this way data can be correlated system-wide to
���
�
�� ��

4.2 Next generation MFCC

The existing MFCC 8441 (PPC603r@300MHz, 32-bit
PPCbus) is being complemented with the MFCC 8442
(PPC750 or G4 @ >450Mhz, 64-bit PPC bus, L2cache).
The new PMC is mainly intended to boost the CPU power
of a system – it will be the first CES board carrying a G4
processor. Although the electrical adapter is no longer
present on the MFCC 8442, it does include a front-end
FPGA connected to the host boards I/O connector (P2 on
RIO2).

4.3 Network interfaces

Several new ATM PMCs based on the IDT 77252 SAR
chip will be available soon. They will allow for copper
connections and multiple ATM channels per PMC. A
functional unit combining an ATM PMC and an MFCC
controlling it has been prototyped using a VxWorks ATM
driver running on the MFCC. With this technique the I/O
capacity of a system can be increased without additional
load to the host (RIO2) processor. It could also be used to
control a WFIP PMC (CEGELEC..[]) for which a
LynxOS driver on the RIO2 is already operational.

A Gbit-Ethernet PMC is planned.

4.4 Next generation processors

With the RIO3 8064, an architecture that was stable
over 5 years and a more than 10-fold increase in CPU
power will change significantly.

The RIO3 will carry a PPC750 or G4 CPU at the
maximum available frequency. The CPU-L2cache-
memory complex will be directly accessible from two
independent 64-bit PCI busses and from VME. The direct

coupling of VME (on the RIO2 VME is coupled via PCI)
will finally allow to reduce VME cycle latency
considerably. The RIO3 will be fully VME 64x/LI
compliant and will provide 2eSST and broadcast.

One of the two PCI busses is routed to P0. Together
with a new PMC carrier board, the PEB 6416, this allows
to control up to 10 PMCs from a single RIO3.
Alternatively, this ‘backplane PCI’ bus can be used in
parallel with VME to interconnect several RIO3 boards.

As the RIO2, the RIO3 will have a CPCI ‘twin’, the
RIOC 4065.

RIO3 8064 Block Diagram

166 MHz

VME 64x-LI 5 rows connectors

L2 cache
1 Mbyte 75x

or 2 Mbytes G4

PPC 75x
or PPC G4

360 pin BGA

SDRAM
Piggy back(s)

64 Mbytes to 1 Gbyte

• Sub I/O
• Front Panel Connector

• Timers
• NVRAM

• FEPROM
• SRAM

• Serial Lines
• Interrupt Controller

10/100baseT 2x RS232C

64-bit PPC bus @ 100 MHz
PPC to

XPC FPGA

64-bit XPC bus @ 100 MHz
XPC to PCI 1

FPGA
XPC to PCI 2

FPGA

XPC to VME
64x-LI
FPGA

VME Autonomous
Block Mover

64-bit PCI bus @ 66 MHz

PMC 1
PCI 64-bit

AMD 973
10/100
BaseTx

Ethernet

PMC 2
PCI 64-bit

P0P1
64-bit PCI bus
@ 33/66 MHz

Back Panel Extension for
PMC Carriers / RIO3s

P2

Figure 3: RIO3 8064 block diagram

5 CONCLUSION
Constructing data acquisition or control systems out of

functional units whose hardware and software elements
can evolve while the systems functionality is maintained
has been proven to be a successful strategy. With its
recently developed multi-processor support tool, CES has
built another powerful tool which should help to rapidly
convert the major technological innovations brought about
by the next generation of hardware into improved the
system performance on the application level.

REFERENCES
[1] F.H.Worm, J.P.Mao, “Modular Function Units for

Flight Test an Validation Systems”, ETTC99, Paris,
June 1999.

[2] M.Weymann, “A PMC Based Computing Core”,
SYSCOMMS98, CERN, Geneva, March 1997.

[3] M.Weymann, “Linking PCI based processor
platforms”, CHEP97, Berlin, April 1997.

352

