
CONTROL SYSTEM RELIABILITY REQUIRES CAREFUL SOFTWARE
INSTALLATION PROCEDURES �

R. Müllery , R. Bakker, T. Birke, R. Lange, BESSY, Berlin, Germany

Abstract

The demands on availability and reliability of the control
system reflects the stability needed by accelerators in pro-
duction. On the other hand the system is continuously de-
veloped and new features have to be included and adapted.
With growing complexity of the system testing for unfore-
seen side effects becomes increasingly difficult. Frequent-
ly control access to pieces of equipment essential for the
operation is necessary. Maintenance periods suited for in-
stallations are mostly extremely short. This paper describes
the release control system and the installation stages used
at BESSY to provide a high level of control system trans-
parency and stability.

1 ENVIRONMENT

The third generation light source BESSY II started user op-
eration in 1999[1]. The control system in use at this ac-
celerator is based on the EPICS toolkit[2]. This paper de-
scribes the control system maintenance and development s-
trategies providing a high level of both development speed
and operational reliability.

1.1 Network Topology

Essential prerequisite of manageable installation proce-
dures is a proper separation of control system development
area and the system used for control and operation of the
accelerator. At BESSY this requirement is met by common
measures like segmentation of the computer network.

Software is developed in a standard desktop environmen-
t configured around a file server in an easily accessible
Internet domain (stage 0 in fig. 1). Here functionalities
are tested for the first time at test stands. In contrast to
that relatively open environment the control system in pro-
duction runs on a highly protected, non-routable Intranet
with autonomous file server, consoles and front end com-
puters (IOCs). Independent network components as well
as fail over configurations guarantee minimized interrup-
tion of service in case of hardware failures or other typical
computer problems.

1.2 Test Stages

Within the control network there is a dedicated test ma-
chine. Access restrictions for this computer are modified

�Funded by the Bundesministerium f¨ur Bildung, Wissenschaft
Forschung und Technologie and by the Land Berlin

yEmail: mueller@bii.bessy.de

Console Console

VMEVME

IDMON

VME

Console Console

VME VME

PSHFVAC

EPICS EPICSEPICS

VME
EPICS

EPICS(EPICS)

Test

D
at

a
A

qu
is

iti
on

M
on

oc
hr

om
at

or

Common Services

DAQ

PC
PC

PC

VME
EPICS

XBPM
Pin
Hole

VME
EPICS

Console

VME
EPICS

LFB

Server

LabViews GP−IB

BPM

BL
Interl

PLC ConsoleConsole
Server

INSTALL

test

icc

ServerRouter

0

1

2

3

 8/99 RM

COM

VME
EPICS

Server

Online Data
Gateway

Archiver
Message
Logging
Problem
Report ...
RDBMS

Communication
Facility

Network Accelerator Controls

Network
Beam
line
Controls

Network
Machine
Development

Figure 1: Sketch of the Network Topology.

to allow for downloads of new software releases from the
development area. System configuration is an independen-
t structural replication of the controls file server. Within
the whole controls environment user accounts are mapped
to functionalities like operator, maintainer etc. The trans-
fer of developers ownership of modules to functionalities
already takes place on the test machine. Access security
allows full hardware control from this computer to admin-
istrator accounts with installing and testing permission.

If a new software module or version is scheduled for go-
ing into operation it first has to be installed on the test ma-
chine either in the boot area of the IOC computers or into
the tree of console applications (stage 1 in fig. 1). As soon
as a time slot for tests becomes available the new versions
are tested by running console applications on the test ma-
chine or booting the IOCs from the test area. Discovered
bugs are fixed, the improved version reinstalled and retest-
ed. Whenever a test time slot ends the switch back to the
settled productional version requires in its worst case the
reboot of the affected IOCs. If the new modules appear to
be sufficiently mature the version repository is updated, the

International Conference on Accelerator and Large Experimental Physics Control Systems

326

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

modules are installed on the file server and become the new
productional version (stage 2/3 in fig. 1).

1.3 Multi-homed Communication Facility

Similar to accelerator controls dedicated networks for the
beamline systems and major user groups are presently in
the phase of being set up. Independency of these areas are
desirable for operational security and availability reasons
but require additional infrastructure.

Data Switch-Yard: For numerous correlation and
monitoring tasks online data have to be passed between the
different networks. E.g. the beam intensity measured by
the accelerator control system has to be available also at the
beamlines. Equally the read-outs of the diagnostic XBPM
systems in the beamline area are needed by the orbit sta-
bility control modules within the accelerator segment. The
data transfers between the networks is provided by gate-
way programs that control transfer of access security and
impact on network bandwidth. It is foreseen to run these
gateway processes on dedicated multi-homed communica-
tion facilities (Fig. 1).

Versioning of Production Systems: At BESSY there
are several layers (core system, toolkit libraries, generic
and custom applications) and streams of development (ac-
celerator, ID, beamline). If a subsystem has to go out of
sync and certain versions of the involved software have to
be frozen today this is mostly done by copying the required
modules to separate locations and using this extra tree for
the build. With increasing complexity of the systems it be-
comes essential to replace this error-prone and inflexible
procedure and maintain a uniform and transparent version-
ing of all production quality software that allows an easy
roll-back to preceding versions. The central communica-
tion facility will provide the required file server functional-
ity for this common repository (stage 2 in fig. 1).

2 SOFTWARE DEVELOPMENT

Guiding ideas behind the common and mandatory source
code development structure have been roll-back and
branch-merging capability, transparency and flexibility as
well as cooperative maintainability.

2.1 Application Development Environment

Unified directory trees with preconfigured Makefiles, in-
stall locations and handles to the proper version of the core
modules are provided to the application developer by a cen-
tral script (makeBaseApp). The common structure eases
migration to newer releases of the base modules and the
transfer of modules to another developer.

2.2 Source Code Control System

Certain intermediate or stable stages of a software module
are preserved by the check in into a source code reposi-

tory. At BESSY the packageConcurrent Versions System
(CVS)[3] is used. CVS features concurrent access, con-
flict resolution and branch merging strategies. Logging of
source file changes and symbolically tagging of certain re-
leases simplifies a secure roll-back to a previous version.
Access and protection is controlled by standard Unix file
permissions. Developers cooperating on a certain package
have a common group identification. Core developers have
to pay additional attention to licensing terms and utilize a
pseudo user identification. For inter-division exchange it
is planned to set up a CVS server to allow for secure and
networked code maintenance and retrieval.

2.3 Module Encapsulation

Shared libraries are used to facilitate independent bug fix-
ing and maintenance of modules used by several console
applications. Typically the interface definition of a module
is not changed. Then it only requires to install the improved
version of the shared library to fix all applications that use
the module. On the back side a careful bookkeeping of al-
l affected software components is required if the interface
definition has to be changed and the installation of the new
shared library is required.

Model

EPICS

CDEV

tcl/TK

DB Access

BPM MonitorPower Supply
Magnet Support

Correlation
Measurement

Data Conversion
Utility

Orbit
CorrectionApplications

Toolkit
Libraries

Core
Libraries

Figure 2: Vertical Dependencies: Module Layers.

2.4 Installation Environment and Procedures

A very convenient feature of the Application Developmen-
t Environment (See 2.1) is the support of installation and
distribution procedures. For each moduleMakefiles allow
to install binaries, libraries, include and resource files as
well as scripts controlling environment variables into the
appropriate location. Distribution stages like the installa-
tion into the developers working directory, into the global
development area, onto the test machine and finally into the
production area file server are easily addressable. The uti-
lized distribution mechanismrdist takes care of the actions
necessary for a synchronization of the module.

No structural solution is available yet for vertical inter-
module dependencies. If a base or intermediate module is
modified it requires the definition of a coordinated rebuild
and installation campaign to get all affected applications
updated. Even if the whole installation process has to run
through the test stages described in 1.2 the vulnerability of
the procedure requires versioning measures.

327

During commissioning many new installations and mod-
ifications took place in parallel. Therefore full copies of the
accelerator control system in production have been saved
routinely to be able to return to a previous, operational ver-
sion if the reason of an unexplainable malfunctioning could
not be found in due time. This procedure quickly turned
out to become unmanageable. In the present stabilized sit-
uation at least certain installation blocks are not overwrit-
ten, but moved into the attic to provide a minimal version
history. As already sketched in 1.3 it is planned to set up
a complete versioning of binaries, libraries and configura-
tions that ever went into production.

3 CONFIGURATION MANAGEMENT

The most difficult part of a ‘living’ control system is a sys-
tematic, consistent and trouble free maintenance of the var-
ious configuration data and their interdependencies.

3.1 Reference Data Repository

At BESSY a relational database serves as a central refer-
ence data repository. Configured around the notion of a
‘device’ and its name this DB is supposed to hold all re-
quired conversion factors, geometrical data, connections
and relations[4].

The whole DB is handled similar to the applications. In-
dependent database instances are set up in the development
area, on the test machine and in the production area. By
stepwise replication the DB has to follow the test stages
that are mandatory for the applications (see 1.2). As an ad-
ditional back-up strategy the periodic export of the whole
DB to an external mass storage system takes care of the u-
nique requirement on consistency, integrity and availability
of the DB content.

3.2 Propagation of Device Modifications

Even if a large fraction of the configuration data are gen-
erated by scripts from the DB there is still a number of
hand-edited files and dependencies that require manual in-
teraction.

If e.g. a new device is added to the system or a device is
modified the ‘horizontal’ dependencies of the various tools
have to be checked to be able to identify affected entities. If
the new device belongs to an existing device class a re-run
of the configuration scripts covers most of the adaptation
work. If a new device class is added the generating scripts
have to be adapted and the net of correlations and depen-
dencies has to be adapted (Fig. 3).

4 PROBLEM TRACKING

Complexity of the system, lack of time and limited avail-
ability of the required hardware prevent the clear exclusion
of problems newly induced with the modifications.

In order to avoid unforeseen side effects a mailing list
mandatory for the controls and application developers has

Data
Base

Generic
Applications

StripTool
multiKnob

Alarm Archiving

Save,
Restore
Compare

Online
Data
Gateway

Entries
Hierarchies

Engineering
Screens

Driving
Correction

Measurement
Evaluation

High
Level
Applications

IOC

RT DB
Appl.

CDEV
ddl

Configuration Modifications

Generating
Scripts

Windows,
Navigation

Preconfigured
Tools

Figure 3: Horizontal Dependencies: Propagation of Modi-
fications.

been set up. Pending new installations or possible problems
are announced on the list to prevent misunderstandings or
need for additional activities.

Thegnats problem reporting system has been configured
to cover the classical service areas (power supplies, RF,
vacuum, controls) and notify the person(s) in charge of the
subsystem via email. Operators are encouraged to use this
tool as a checkable, reliable and transparent tool to trans-
mit complaints, observations or comments. A tcl/Tk and a
WEB interface help to create and submit reports, check the
progress on a subject etc.

5 SUMMARY

The combination of version control, staged installation pro-
cedures and partly automatized configuration management
turned out to be a manageable compromise of effort and
efficiency. The resulting availability, consistency and reli-
ability justifies today’s unquestionable confidence into the
control system.

6 REFERENCES

[1] R. Bakker et al., ‘Status and Commissioning Results of
BESSY II’, Proceedings of the 1999 PAC, New York, 1999

[2] R. Bakker et al., Proceedings of the 1998 EPAC, Stockholm,
1998, p.1676

[3] CVS has been developed by Per Cederqvist et. al. and is avail-
able under the GNU General Public License

[4] R. Bakker, T. Birke, B. Kuske, B. Martin, R. M¨uller, Proceed-
ings of the 1997 ICALEPCS, Beijing, 1997, p.407

328

