International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

GENERIC REPOSITORY AND SEARCH ENGINE FOR

LHC EQUIPMENT TEST DATA

M. Peryt, F. Momal
CERN, Geneva, Switzerland

Abstract

The construction of the CERN Large Hadron Collider
involves an unprecedented amount of equipment testing.
Very large volumes of data are taken by various data
acquisition and SCADA systems and stored in plain files,
in many formats and in diverse locations. Without
appropriate tools, the domain experts have to put a lot of
effort into locating the right information. Most of the time
they have to transform data by hand in order to be able to
analyze it with their favorite software tools.

We have developed a data storage framework
addressing those issues. Data coming from various
sources before their insertion into the repository are
transformed to conform with an optimized, generic and
open data model. System architecture is based on a three-
tier paradigm to provide the separation between a storage
layer and a data processing layer. Complex, user-defined
queries and on-thefly preprocessing of data are
supported. Data access tools take advantage of new
industry-standard technologies (WWW, Java). Thanks to
this approach it is possible to access data in a platform-
independent way and to plug-in the data access
functionality into widely used software tools
(spreadsheets, scientific toolkits).

1 INTRODUCTION

The environment in which the new archive facility
operates is composed of many sources of information.
We have to deal with data produced by various data
acquisition systems, entered manually by operators or
submitted by collaborating institutes and companies.
There are a large number of distinct data formats. Files
are stored in many locations, dispersed all over the CERN
network. Consequently, it is not only hard to locate the
right piece of information, but also to ensure the safety
and good quality of data. On the other hand there is an
ever-increasing demand for centralized storage of data
and for consistent and easy to use search and retrieval
facilities. Domain experts want to be able to retrieve and
analyze the information in a user-friendly way, regardless
of its origin. They do not want to be forced to perform
several queries just because data in question was taken by
different data acquisition systems. They wish to do
statistics on data sets spanning months and years without
having to browse tens of subdirectories on backup storage
devices. They prefer to use industry-standard, versatile
software tools to process and analyze data. They certainly
would not mind should they be able to automate their

routine, everyday tasks. Their task is to look at the
information, not to look for it.

Our archive facility addresses those issues by
providing a modular, multi-layer framework for archiving
and for platform-independent retrieval of data in
heterogeneous distributed computing environment. We
chose not to deliver one more two-tier closed solution
composed of a central database and surrounding user
interfaces. We wanted a system that would be open
enough to follow the inevitable evolution of information
gathering systems related to the development of the LHC.
We also wanted to be able to cope with the fast evolving
new Internet technologies in order to take full advantage
of facilities they provide.

Several groups at CERN aready use the archive
facility. Several new projects plan to include it in their
data management infrastructure. The system undergoes
constant development and new modules are being added
on a continuous basis.

This paper discusses the requirements for the system,
its architecture and plans for the future.

2 REQUIREMENTS

2.1 What we must store

The archiving facility must accept various formats of
data acquired by test and measurement systems. In
addition, it must be able to store many kinds of
configuration information or calibration parameters. At
lower level we can distinguish two basic flavors of data:

1. Timestamped data. Those include stepwise-
constant and fixed-frequency data. Sampling rates
cover a wide range, from several minutes down to
microseconds and even higher frequencies are
expected in the future.

2. Tabular data These are normally records
composed of an arbitrary number of fields. The
relationships and interconnections between records
may be rather complex.

2.2 How we can search

The tabular data are searched with SQL-like queries. In
most cases search criteria are combinations of logical,
arithmetical and string operators. Time-stamped data are
more difficult to search. We must provide access at
various levels of granularity. It must be possible to
retrieve a single value recorded at a certain point in time.
On the other hand we must be able to work with very
large sets of data, spanning weeks, months or even years

493

(e.g. we want to know how many weeks a magnet spent
below 1.9 K during the last two years). That means that
we have to provide an efficient time-series management
system.

2.3 What we search with

Gone are the days when one had to write a different
user-interface for each supported platform. Fortunately,
we do not have to dig anymore into details of numerous
operating systems and GUI’s. What we want to do is take
advantage of software that is installed on amost every
personal computer or workstation. And we want to let the
people do their job even if they are away from their
office. This is easily achievable through a Web service
managing the data while integrating that service into
popular data anaysis software (spreadsheets,
mathematical and statistical toolkits).

2.4 \What else we can do

In addition to being a data store and search engine, our
archiving system must also provide the necessary
infrastructure for dynamic data processing. This includes
on-the-fly transformations of raw data into physical
values, statistical analysis, digital signal processing, etc.
One way to achieve this is to define a specification for
plug-ins that will be dynamicaly included into the
archiving system engine to perform custom
manipul ations on raw data.

3 SYSTEM ARCHITECTURE

Figure 1 provides an overall view of the architecture of
the archiving system. We can easily distinguish the three
logical tiers, each of them containing several functional
components. At the top there is a client layer, providing
the user interface to request the services from the
archiving system and to display the responses. The
middle layer is composed of application services that
interpret and dispatch user’s requests and send back the
replies. It is the layer that knows the logical structure and
physical locations of data residing in the bottom layer of
data services. Each flavour of data is assigned to a
particular data store, optimised for efficiency when
dealing with that particular kind of information.

When we look closely at the client layer, we can
distinguish two groups of components. The first group
supports a one-way data flow and deals with pre-
processing and insertion of DAQ data into the archiving
system. Typicaly it works in a batch mode with
processes being launched periodically (eg. once every 24
hours) or upon request (after each burst of data). DAQ
data files can be in any format. One way to interpret their
content is to put them through some kind of input filter
that converts them into intermediate format known to the
archiving system. Then, they can be loaded with a generic
loader module. An alternative to that solution is to group

DATA LOADING INTERACTIVE DATA MANAGEMENT

WWw
DAQ
QSTED BROWSER

HTML, CGI
PHP JAVA
APPLETS
HTML PAGES
& TEMPLATES
COMMAND-LINE
UTILITIES

- :

CLIENT
MODULES

INPUT
FILTERS

DATA ARCHIVE
CLIENT LIBRARY

GENERIC
DATA LOADER

CUSTOM
DATA LOADER

v

DATA SERVER
(DAEMON)

< DATA ARCHIVE SERVER LIBRARY

/T\
A

= £
DATABASE DATA PROCESSING FILE
(ORACLE) PLUG-IN SERVER

APPLICATION
SERVICES

DATA
SERVICES

Figure 1. Overall system architecture

an input filter and a data loader into one module (custom
data loader). The application server ensures that data
entered into the system are coherent.

The components belonging to the second group within
the client layer are interactive. They are controlled
directly by a user. Their role is to provide the tools to
search and retrieve the data from the archiving system
and aso to manually edit (insert, update, delete) the
information. A significant effort has been put to
implement those components using very standard tools
(HTML, Java, server-side scripting, CGl), so that users
do not need any exatic software to perform their tasks.

The application services layer is built around a
common data archive server library. This library
congtitutes a unique interface with the repository. It
ensures that all modifications to the archive move the
data from one consistent state to another. The client layer
modules can either link directly with the library to make
use of the services it provides, or can communicate with
the data server daemon using well defined protocol built
on top of TCP/IP. The library itself interprets the client
reguests and redirects them after appropriate trandation
to the data server modules. This approach allows
dissociating the data storage and data processing and thus
provides optimised solutions to those issues.

Data services are as diverse as data flavours that the
system has to dea with. Some data models yield
themselves better to relational database storage, others fit
particularly well into plain file systems, with indexes
stored in a fully-fledged database. It is aso necessary
sometimes to generate information on the fly by applying
certain procedures and parameters to raw data. All these
services are provided by specialised modules belonging
to the data services layer.

494

4 IMPLEMENTATION NOTES

The system has been developed using object-oriented
techniques. OMT was used in the design phase. Most of
the code, including the data archiving server library, was
written totally in C++ and makes use of severa
commercial OO libraries. Even the interaction with
relational database (Oracle™) is encapsulated into a
library of objects. There are two versions of the data
archiving client library: one written in C++ and the other
in Java. The interoperability has been achieved thanks to
the two-way mechanism allowing for serialisation and de-
serialisation of Java and C++ objects. For the WWW
gateway we use CGI scripts and PHP server-side
scripting (http://www.php.net), as well as our own
product: cs_gw (see [1]). We provide Java applets in the
cases where more interactivity is required.

5 USE CASES

The following use cases describe two different
occurrences in which our data archiving facility has been
successfully used. The first system is the LHC test string,
where we had to deal with time-stamped data and
configuration information. The second one uses rotating
coils to measure the magnetic flux as a function of cail
angular position, producing thousands of records of data.

The purpose of the test string project is to measure the
properties of assemblies of superconducting magnets. The
cryogenics and vacuum installations are controlled by a
commercial supervision system. A data acquisition
system developed with LabVIEW™ is used to record the
slowly changing data as well as the transient data from a
number of transducers. In addition, geometrical data are
produced on an irregular basis to record the information
about minuscule movements of the assembly.
Consequently, the test string data are coming from three
sources. The first source is the supervision system,
producing slowly changing logging data in form of
comma-separated values (CSV) files. The second one is
the data acquisition system, logging data and transient
datain form of binary filesin LabVIEW™ native format.
The displacement sensors, whose CSV files are generated
by specialized calculation routines, represent the last
source. For each of those subsystems an input filter has
been developed to convert data into a common
intermediate file format. Those intermediate files are
loaded into the archiving system. Users can retrieve the
data through forms-based WWW interface. They can
perform time searches or event (e.g. trigger) searches and
freely combine channels belonging to any of the original
sources of data. The resulting CSV files are transmitted to
users local computers for subsequent analysis. MS
Excel™ integration using macro sheets is provided on
MS Windows™ platform so that data are sent directly
from Web browser to a spreadsheet and users are able to

495

display charts or perform standard analysis procedures
with afew clicks on their mouse.

The task of the archiving system, in the case of
magnetic measurements, is to store the parameters of
coils involved in the process as well as the raw data from
measurements. Users can locate the relevant
measurements by specifying a number of criteria and can
then apply various analysis procedures in order to study
the properties of magnetic field. Coil parameters are also
involved in the anaysis process as they alow the
transformations of raw data into, for example, the
information, which is necessary to perform the harmonics
analysis. Users can manage the coils parameters with a
Java applet. The retrieval of raw measurements is
possible through forms-based WWW interface and a
command-line utility running on most of the Unix
platforms. The output of this utility can be easily piped
into analysis tools provided by the domain experts to
automate the standard analysis procedures.

6 CONCLUSIONS

The data archiving system has received a warm
welcome among the users and is one of the basic tools in
their everyday work. In addition, it is now becoming a
part of a larger project whose objective is to provide an
integration framework for various aspects of LHC
controls. We am at an automatic configuration of
control, data acquisition, visualisation and archiving
subsystems according to one generic description of the
particular system. Presently each subsystem has to be
developed separately thus possibly leading to some
inconsistencies.

One of the subprojects of this integration framework is
an advanced time series management library supporting
very high data sampling frequencies and an extensive
range of operations on time-stamped data. It is how in the
design phase and the development should be completed
inthefirst half of year 2000.

We are aso working to replace the non-standard
communication layer of the data archiving client and
server libraries with code based making use of CORBA.

More and more industry-standard based interfaces into
the archiving facility will be provided. We are currently
looking into JDBC™ and ActiveX ™.

REFERENCES

[1] F.Momadl,, “A gateway between the Web and
process control data (cs_gw)”,
http://wwwlhc.cern.ch/Docs/cs gw_docs.htm

[2] M. Peryt, “Archiving System for LHC Test and
Measurement Data. Technical Report.”,
http://wwwlhc/RPT S/ArchivingSystemReport.PDF

