
Future of CORBA for Distributed Future of CORBA for Distributed
RealReal--time & Embedded Systemstime & Embedded Systems

Thursday, October 18, 2007, ICALEPCSThursday, October 18, 2007, ICALEPCS

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt/

Vanderbilt University
Nashville, Tennessee

Institute for Software
Integrated Systems

mailto:d.schmidt@vanderbilt.edu

2

Distributed Real-time & Embedded (DRE) Systems

Stand-alone real-time &
embedded systems

• Stringent quality of service (QoS)
demands

• e.g., latency, jitter, footprint
• Resource constrained

Stand-alone real-time &
embedded systems

• Stringent quality of service (QoS)
demands

• e.g., latency, jitter, footprint
• Resource constrained

The Past

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

Enterprise distributed real-time & embedded (DRE)
systems

• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

Enterprise distributed real-time & embedded (DRE)
systems

• Network-centric “systems of systems”
• Stringent simultaneous QoS demands

• e.g., dependability, security, scalability, etc.
• Dynamic context

Present & Future

3

Diverse Mission-Critical DRE System Characteristics

• Typically heterogeneous &
complex, requiring support for:

– Different hardware platforms

– Software written in different
programming languages

– Highly distributed net-centric
environment(s)

SCADA & C2SCADA & C2 Air Traffic ControlAir Traffic Control

Op
Control

Transport ManagementTransport Management

• Need to assure efficient, predictable, &
scalable end-to-end QoS

• Need dynamic reconfiguration to support
varying workloads over operational lifecycle of
system

• Need to be affordable to reduce initial system
acquisition costs & recurring upgrade &
evolution costs

These systems have characteristics of enterprise & real-time embedded systems

4

Challenge: Selecting Middleware for DRE Systems

• Develop software entirely in-house
using proprietary solutions

• Develop software using domain-
specific, community-based
technologies

• Develop software using latest
commercial-off-the-shelf (COTS)
technologies

• Develop software using mature
standards-based technologies

5

Overview of CORBA

Interface
Repository

IDL
Compiler

Implementation
Repository

Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

•CORBA shields applications from hetero-
geneous platform dependencies
•e.g., languages, operating systems,
networking protocols, hardware

• Common Object Request Broker
Architecture (CORBA)

• A family of specifications
• OMG is the standards body

• CORBA defines interfaces, not
implementations

• It simplifies development of
distributed applications by
automating/encapsulating

• Object location
• Connection & memory mgmt.
• Parameter (de)marshaling
• Event & request demultiplexing
• Error handling & fault tolerance
• Object/server activation
• Concurrency
• Security

6

Overview of Real-time CORBA

Client OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding

Portable Priorities

Scheduling
Service

Real-time CORBA address some (but by
no means all) important DRE system

development challenges

•Real-time CORBA adds QoS
control to regular CORBA to
improve application predictability,
e.g.,
–Bounding priority inversions &
–Managing resources end-to-end

•Policies & mechanisms for
resource configuration/control in
Real-time CORBA include:
1.Processor Resources

•Thread pools
•Priority models
•Portable priorities
•Synchronization

2.Communication Resources
•Protocol policies
•Explicit binding

3.Memory Resources
•Request buffering

7

Why Use CORBA?

• After all people think CORBA is dead

• Why?

– Associated with legacy systems

– Mid 90’s technology therefore must be obsolete

– Perceived as “big & slow”

– Not exciting to write about

– They think it died of complexity

• Why not?

– Inclusive technology

– Committed, seasoned user base

– Maturity has led to highly time/space optimized
ORBs

– What works is boring

– It is solving increasingly complex issues

8

Span of Middleware Technologies for DRE Systems

Soft Real-time
(Display and

decision
support

Non-real-time
Business
Systems

Hard Real-
time (sensor
and actuator

Control)

Extreme Real-
time (signal
processing)

MicroSoft .NET

Java / RMI

CORBA (GPP)

MPI

Market
Share

OMG Data Distribution Service (DDS)

RT CORBA (DSP) RT CORBA (FPGA)

Source: OACE Tech. & Stds. Sept. 2003

9

Alternate Technology Message Speeds

Transport
characteristics
eventually
dominate large
messages

Source:Gautam H. Thaker Lockheed Martin Advanced Technology Labs Camden, NJ

www.atl.external.lmco.com/projects/QoS/compare/dist_oo_compare_ipc.html

10

The Future of CORBA

• Improvements in CORBA features & performance
•Extensions to the CORBA object model
•Complementary technologies

11

The Future of CORBA

• Improvements in CORBA features & performance
•Extensions to the CORBA object model
•Complementary technologies

12

Fixing Problems with the CORBA C++ Mapping
1.Memory management is too

complicated & easy to get
wrong due to lots of rules to
memorize, e.g.,

• Storing strings within
sequences & structs

• Not handling the return
reference from an operation,
but passing it to another
operation

• Not setting length() of
sequence properly

• Not duplicating object
references properly

• Not using ServantBase_var
properly

2.Lack of standard C++ classes makes CORBA
look “old & lame” & causes extra work for
programmers

• e.g., it’s a lot of work to move the data back &
forth between the standard C++ types you want
to manipulate & the types you need to pass as
parameters

3.A tremendous amount of code gets generated for
the C++ mapping, leading to bloat & slow
compilation

• The size difference between the same essential
set of functionality can be roughly on the order
of 5:1

• e.g., for e*ORB C & C++ on Red Hat 9 Linux
compiled with gcc 3.2 the C libec_poa.so is 29
kbytes C++ vs libe_mpoa.so is 105 kbytes

13

Top 10 Things to Fix in C++ Mapping

1.All memory should be self-managed
• This includes CORBA::Object,

sequences, strings, structures of
all types, etc

2.Structs & unions should have useful
constructors

3.Arrays should be implemented using
std::vector<>

Many more suggestions in CUJ columns by Vinoski & Schmidt
• http://www.ddj.com/dept/cpp/184403757
• http://www.ddj.com/dept/cpp/184403765
• http://www.ddj.com/dept/cpp/184403778

4.Fix valuetypes so they use consistent
reference counting scheme

5.All types should offer exception-safe swap()
operations

6.Use bool, wchar_t, wstring, std::string,
std::vector, etc.
• Do not introduce new types unless you

must
7.Repeat number (1) until you reach (10)

14

Improvements in CORBA Performance
One benefit of CORBA being a mature standard is that it runs in One benefit of CORBA being a mature standard is that it runs in multiple multiple
processor types, including GPP, DSP, & FPGA environmentsprocessor types, including GPP, DSP, & FPGA environments

DSPGPP
e*ORB

C & C++

FPGA
e*ORB

C & C++ ICO

GIOP EverywhereGIOP Everywhere

Extensible Transport FrameworkExtensible Transport Framework
Key Advantages:
• CORBA message processing can be executed directly in H/W, which is 100x

faster than in S/W
• Eliminates the need for S/W proxies/adapters on GPPs, which Reduces

overhead/latency & increases throughput
• Supports direct access to application components running on H/W
• Supports vision of architectural consistency across all aspects of the application

15

The Future of CORBA

• Improvements in CORBA features & performance
•Extensions to the CORBA object model
•Complementary technologies

16

Application

Development &
Deployment

Object
Implementations

Language
Tools

Libraries

“Other”
Implementations

Applications

• DOC CORBA doesn’t specify how
configuration & deployment of objects should
be done to create complete applications

–Proprietary infrastructure & scripts are
written by developers to facilitate this

• DOC CORBA IDL doesn’t
specify how to group related
interfaces to offer a service
family

–Such “bundling” must be
done by developers via
idioms & patterns

Drawbacks of CORBA Middleware
Distributed Object Computing (DOC) CORBA 2.x application development can be tedious

Interface
Design

IDL
Definitions

IDL
Compiler

Stubs
&

Skeletons

DOC CORBA 2.x defines interfaces & policies, but not implementations

17

Solution: Component Middleware
•Creates a standard
“virtual boundary” around
application component
implementations that
interact only via well-
defined interfaces

•Define standard
container mechanisms
needed to execute
components in
generic component
servers

Container

…

•Specify the infrastructure
needed to configure &
deploy components
throughout a distributed
system

…
…

…

…
<ComponentAssemblyDescription id="a_HUDDisplay"> ...
<connection>

<name>GPS-RateGen</name>
<internalEndPoint><portName>Refresh</portName><instance>a_GPS</instance>
</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName><instance>a_RateGen</instance>
</internalEndPoint>
</connection>
<connection>

<name>NavDisplay-GPS</name>

<internalEndPoint><portName>Refresh</portName><instance>a_NavDisplay</insta
nce>

</internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</instance>
</internalEndPoint>

</connection> ...
</ComponentAssemblyDescription>

18

•Components encapsulate application
“business” logic

•Components interact via ports
•Provided interfaces, e.g.,facets
•Required connection points, e.g.,
receptacles

•Event sinks & sources
•Attributes

•Containers provide execution
environment for components with
common operating requirements

•Components/containers can also
•Communicate via a middleware bus
and

•Reuse common middleware
services

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

Overview of Lightweight CORBA Component Model

Lightweight CCM defines interfaces & policies, & some implementations

www.dre.vanderbilt.edu/~schmidt/OMG-CCM-Tutorial.ppt

19

…

Container

… …

Container

…

Applying Model-Driven Engineering to Lightweight CCM

www.dre.vanderbilt.edu/~schmidt/OMG-CCM-Tutorial.ppt

1

2

3

20

The Future of CORBA

• Improvements in CORBA features & performance
•Extensions to the CORBA object model
•Complementary technologies

21

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R

Overview of the Data Distribution Service (DDS)

Tactical
Network & RTOS

DDS Pub/Sub
Infrastructure

RT Info to Cockpit &
Track Processing

• DDS is an highly efficient OMG
pub/sub standard

• e.g., fewer layers, less
overhead

22

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R
NEW TOPIC

NEW

SUBSCRIBER

• DDS is an highly efficient OMG
pub/sub standard

• e.g., fewer layers, less
overhead

• DDS provides meta-events for
detecting dynamic changes

NEW

PUBLISHER

Overview of the Data Distribution Service (DDS)

23

• DDS is an highly efficient OMG
pub/sub standard

• e.g., fewer layers, less
overhead

• DDS provides meta-events for
detecting dynamic changes

• DDS provides policies for
specifying many QoS requirements
of tactical information management
systems, e.g.,

• Establish contracts that
precisely specify a wide variety
of QoS policies at multiple
system layers

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7X

HISTORY

RELIABILITY
COHERENCY

RESOURCE LIMITS

LATENCY

Overview of the Data Distribution Service (DDS)

24

• DDS is an highly efficient OMG
pub/sub standard

• e.g., fewer layers, less
overhead

• DDS provides meta-events for
detecting dynamic changes

• DDS provides policies for
specifying many QoS requirements
of tactical information management
systems, e.g.,

• Establish contracts that
precisely specify a wide variety
of QoS policies at multiple
system layers

• Move processing closer to data

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

Topic

R

SOURCE

FILTER

DESTINATION

FILTER

TIME-BASED

FILTER

Overview of the Data Distribution Service (DDS)

25

Concluding Remarks
• Software industry is

heavily driven by “fads”

• i.e., “Teen-age boy
band” syndrome

• CORBA is no longer the
new kid on the block

• In fact, it has a lot of
facial hair, much of it
gray ;-)

• With maturity comes
certain virtues

• High performance &
integration with many
platforms, languages,
& technologies

www.dre.vanderbilt.edu/~schmidt/ICALEPCS.ppt

	Future of CORBA for Distributed �Real-time & Embedded Systems ��Thursday, October 18, 2007, ICALEPCS
	Distributed Real-time & Embedded (DRE) Systems
	Overview of CORBA
	Overview of Real-time CORBA
	Why Use CORBA?
	Span of Middleware Technologies for DRE Systems
	Fixing Problems with the CORBA C++ Mapping
	Top 10 Things to Fix in C++ Mapping
	Drawbacks of CORBA Middleware
	Solution: Component Middleware

