Future of CORBA for Distributed Real-time & Embedded Systems

Thursday, October 18, 2007, ICALEPCS

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee

Distributed Real-time & Embedded (DRE) Systems

The Past

- Stringent quality of service (QoS) demands
 - e.g., latency, jitter, footprint
- Resource constrained

Enterprise distributed real-time & embedded (DRE) systems

- Network-centric "systems of systems"
- Stringent simultaneous QoS demands
 - e.g., dependability, security, scalability, etc.
- Dynamic context

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

Diverse Mission-Critical DRE System Characteristics

These systems have characteristics of enterprise & real-time embedded systems

- Typically heterogeneous & complex, requiring support for:
 - Different hardware platforms
 - Software written in different programming languages
 - Highly distributed net-centric environment(s)

- Need to assure efficient, predictable, & scalable end-to-end QoS
- Need dynamic reconfiguration to support varying workloads over operational lifecycle of system
- Need to be affordable to reduce initial system acquisition costs & recurring upgrade & evolution costs

Challenge: Selecting Middleware for DRE Systems

 Develop software entirely in-house using proprietary solutions

 Develop software using domainspecific, community-based technologies

 Develop software using latest commercial-off-the-shelf (COTS) technologies

 Develop software using mature standards-based technologies

Overview of CORBA

- CORBA shields applications from heterogeneous platform dependencies
 - e.g., languages, operating systems, networking protocols, hardware

- Common Object Request Broker Architecture (CORBA)
 - A family of specifications
 - OMG is the standards body
- CORBA defines interfaces, not implementations
- It simplifies development of distributed applications by automating/encapsulating
 - Object location
 - Connection & memory mgmt.
 - Parameter (de)marshaling
 - Event & request demultiplexing
 - Error handling & fault tolerance
 - Object/server activation
 - Concurrency
 - Security

Overview of Real-time CORBA

Real-time CORBA address *some* (but by no means all) important DRE system development challenges

- Real-time CORBA adds QoS control to regular CORBA to improve application predictability, e.g.,
 - –Bounding priority inversions &
 - -Managing resources end-to-end
- Policies & mechanisms for resource configuration/control in Real-time CORBA include:

1.Processor Resources

- Thread pools
- Priority models
- Portable priorities
- Synchronization

2.Communication Resources

- Protocol policies
- Explicit binding

3. Memory Resources

Request buffering

Why Use CORBA?

- After all people think CORBA is dead
- Why?
 - Associated with legacy systems
 - Mid 90's technology therefore must be obsolete
 - Perceived as "big & slow"
 - Not exciting to write about
 - They think it died of complexity
- Why not?
 - Inclusive technology
 - Committed, seasoned user base
 - Maturity has led to highly time/space optimized
 ORBs
 - What works is boring
 - It is solving increasingly complex issues

Span of Middleware Technologies for DRE Systems

Source: OACE Tech. & Stds. Sept. 2003

Alternate Technology Message Speeds

Source: Gautam H. Thaker Lockheed Martin Advanced Technology Labs Camden, NJ

The Future of CORBA

- Improvements in CORBA features & performance
- Extensions to the CORBA object model
- Complementary technologies

The Future of CORBA

- Improvements in CORBA features & performance
- Extensions to the CORBA object model
- Complementary technologies

Fixing Problems with the CORBA C++ Mapping

- 1.Memory management is too complicated & easy to get wrong due to lots of rules to memorize, e.g.,
 - Storing strings within sequences & structs
 - Not handling the return reference from an operation, but passing it to another operation
 - Not setting length() of sequence properly
 - Not duplicating object references properly
 - Not using ServantBase_var properly

- 2.Lack of standard C++ classes makes CORBA look "old & lame" & causes extra work for programmers
 - e.g., it's a lot of work to move the data back & forth between the standard C++ types you want to manipulate & the types you need to pass as parameters
- 3.A tremendous amount of code gets generated for the C++ mapping, leading to bloat & slow compilation
 - The size difference between the same essential set of functionality can be roughly on the order of 5:1
 - e.g., for e*ORB C & C++ on Red Hat 9 Linux compiled with gcc 3.2 the C libec_poa.so is 29 kbytes C++ vs libe_mpoa.so is 105 kbytes

Top 10 Things to Fix in C++ Mapping

- 1. All memory should be self-managed
 - This includes CORBA::Object, sequences, strings, structures of all types, etc
- 2. Structs & unions should have useful constructors
- 3.Arrays should be implemented using
 std::vector<>

- 4. Fix valuetypes so they use consistent reference counting scheme
- 5. All types should offer exception-safe swap() operations
- 6. Use bool, wchar_t, wstring, std::string, std::vector, etc.
 - Do not introduce new types unless you must
- 7. Repeat number (1) until you reach (10)

Many more suggestions in CUJ columns by Vinoski & Schmidt

- http://www.ddj.com/dept/cpp/184403757
- http://www.ddj.com/dept/cpp/184403765
- http://www.ddj.com/dept/cpp/184403778

Improvements in CORBA Performance

One benefit of CORBA being a mature standard is that it runs in multiple processor types, including GPP, DSP, & FPGA environments

GIOP Everywhere

Extensible Transport Framework

Key Advantages:

- CORBA message processing can be executed directly in H/W, which is 100x faster than in S/W
- Eliminates the need for S/W proxies/adapters on GPPs, which Reduces overhead/latency & increases throughput
- Supports direct access to application components running on H/W
- Supports vision of architectural consistency across all aspects of the application

The Future of CORBA

- Improvements in CORBA features & performance
- Extensions to the CORBA object model
- Complementary technologies

Drawbacks of CORBA Middleware

Distributed Object Computing (DOC) CORBA 2.x application development can be tedious

- DOC CORBA IDL doesn't specify how to group related interfaces to offer a service family
 - –Such "bundling" must be done by developers via idioms & patterns
- DOC CORBA doesn't specify how configuration & deployment of objects should be done to create complete applications
 - Proprietary infrastructure & scripts are written by developers to facilitate this

DOC CORBA 2.x defines interfaces & policies, but not implementations

Solution: Component Middleware

- Creates a standard
 "virtual boundary" around
 application component
 implementations that
 interact only via well defined interfaces
- Define standard container mechanisms needed to execute components in generic component servers
- Specify the infrastructure needed to configure & deploy components throughout a distributed system

Overview of Lightweight CORBA Component Model

- Components encapsulate application "business" logic
- Components interact via ports
 - Provided interfaces, e.g., facets
 - Required connection points, e.g., receptacles
 - Event sinks & sources
 - Attributes
- Containers provide execution environment for components with common operating requirements
- Components/containers can also
 - •Communicate via a *middleware bus* and
 - Reuse common middleware services

Lightweight CCM defines interfaces & policies, & some implementations

Applying Model-Driven Engineering to Lightweight CCM

The Future of CORBA

- Improvements in CORBA features & performance
- Extensions to the CORBA object model
- Complementary technologies

- DDS is an highly efficient OMG pub/sub standard
 - e.g., fewer layers, less overhead

- DDS is an highly efficient OMG pub/sub standard
 - e.g., fewer layers, less overhead
- DDS provides meta-events for detecting dynamic changes

- DDS is an highly efficient OMG pub/sub standard
 - e.g., fewer layers, less overhead
- DDS provides meta-events for detecting dynamic changes
- DDS provides policies for specifying many QoS requirements of tactical information management systems, e.g.,
 - Establish contracts that precisely specify a wide variety of QoS policies at multiple system layers

- DDS is an highly efficient OMG pub/sub standard
 - e.g., fewer layers, less overhead
- DDS provides meta-events for detecting dynamic changes
- DDS provides policies for specifying many QoS requirements of tactical information management systems, e.g.,
 - Establish contracts that precisely specify a wide variety of QoS policies at multiple system layers
 - Move processing closer to data

Concluding Remarks

- Software industry is heavily driven by "fads"
 - i.e., "Teen-age boy band" syndrome

- CORBA is no longer the new kid on the block
 - In fact, it has a lot of facial hair, much of it gray ;-)

- With maturity comes certain virtues
 - High performance & integration with many platforms, languages, & technologies

