
EXTENDEND APPLICATION FIELDS FOR THE RENOVATED GSI
CONTROL SYSTEM

K. Höppner, L. Hechler, K. Herlo, P. Kainberger, U. Krause, S. Matthies, GSI, Darmstadt, Germany

Abstract

The current GSI control system uses a very monolithic
approach that made it difficult to extend the system to other
than the original platforms (VME front ends and Open-
VMS on the application level). For the present renovation
project of the communication layers, flexibility was a ma-
jor design criterion. Front-end and application levels are
connected via CORBA middleware, giving free choice for
using various system architectures and programming lan-
guages on both levels. While most of the current front-end
software will be ported to the existing VME front-end envi-
ronment, now running Linux, the new system can integrate
devices running on various architectures and operating sys-
tems into the new GSI control system. To model equip-
ment functionality as independently as possible, generat-
ing adapter code from a well-defined XML description of
device models is now under development. This will make
the task of porting the existing 65 device models (includ-
ing around 3000 properties) to the new modular approach
easier.

INTRODUCTION

The GSI control system was commissioned nearly 20
years ago. Since then it was extended step by step to cope
with the continuously refined usage of the GSI accelera-
tors. In regular operation, three ion sources serve up to five
experiments in pulse to pulse time sharing mode, allow-
ing varying setups according to the different experiment re-
quests as well as providing a set of fixed beams for cancer
irradiation.

The high degree reached in operation demonstrates the
capabilities of the system outline. However, fulfilling the
growing demands becomes more and more difficult. Rigid
structures severely hinder to keep up with the technolog-
ical progress. Future work therefore has to spend special
attention to provide sufficient flexibility in the system.

GSI CONTROL SYSTEM

Outline of Control System

The GSI control system is designed as a decentralized
distributed system, according to the well established stan-
dard model (fig. 1): Operation level workstations for man
machine interaction and data generation, connected by net-
work to VME front-end controllers for device handling.

A characteristic of the GSI system is to use two hard-
ware layers in the front-ends. Real-time Equipment Con-
trollers (EC), synchronized by the timing system, assure
precisely timed equipment handling with an accuracy down

Databases

dev c1

dev c2

EC

DPR

dev d1

dev d2

EC

DPR

SC ETH

16 x 255 Events

Timing Signals

EC

DPR

dev b1

dev b2

EC

DPR

dev a1

dev a2

SC ETH

Services

Ethernet

Figure 1: Outline of GSI control system.

to several microseconds. Remote requests via the network
are handled in separate Supervisor Controller (SC) boards
which don’t need any real-time capability.

Status

Not unusual at that time when the system was developed,
focus was on over-all functionality only. To provide a tuned
system, most of the software, even the network protocol,
and the equipment interfacing hardware, were developed
in-house. Tailoring to the underlying platforms has lead to
a system in which the components of the the operation level
and the front-end level are tightly interwoven.

Modifications of the core components are very cumber-
some because of the coupling and had to be avoided in the
past. As a result the system is implemented only on the
platforms used during original development: OpenVMS
workstations and specific M680xx VME boards.

The SC boards are no longer available and need to be
replaced urgently. Porting to similar boards would be pos-
sible, in principle. However, this would conserve the rigid
structures further on. Therefore a more general renova-
tion was started: Completely rebuilding the communica-
tion layers in the control system.

RENOVATION PROJECT

Strategy

The new communication layers have to implement a sim-
ilar functionality as before, to allow usage with the existing
operation’s applications. Using nowadays available mid-
dleware, this can be done with much less effort compared
to the existing implementation with its proprietary compo-
nents.

Decision was made to use CORBA since it straightfor-
wardly links applications in different programming lan-

WPPA34 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

386



guages including scripting languages like Python, on dif-
ferent operating systems. Being well standardized, many
commercial CORBA implementations are available as well
as OpenSource developments.

Implementation Outline

The system software on the SCs was developed newly. It
offers a device model similar to the former one: Indepen-
dent devices with properties reflecting the characteristics of
the equipment. Access to equipment means calling a prop-
erty for a specific device.

A central device manager establishes the device objects.
Installation is on PowerPC VME boards running Linux.

Presently, about 65 different device types have to be sup-
ported, implementing about 3000 different properties. Be-
ing the major part of the SC software, the code of these
properties can be re-used in the new environment with
small adaptations. The existing EC installation, soft- as
well as hardware, can be integrated nearly unchanged.

The existing procedural client interface is extended so
that it can also handle the new device implementation. Both
device front-end installations, the old and the new, can be
used in parallel to allow a smooth step by step migration on
the front-end side. For future use, an OO client interfaces is
provided. Presently C++ and Python are supported, while
a Java interface is under development.

Status

The implementation has reached the state were it can be
used under real-life conditions. It is installed in a first loca-
tion in the accelerator and showed the usability of the un-
derlying approach in a first experiment’s beam time. With
this new SC software the control system overcomes the for-
mer limitations to OpenVMS and dedicated VME boards
on the front-end side.

EXTENDED APPLICATION FIELDS

Non-VME Devices

The new device presentation layer was initially devel-
oped for usage on the PowerPC SC boards. It sits atop of
the existing ECs which handle the equipment control, and
the interfacing to the equipment. Test of the system re-
quested installation on a VME crate, equipped with at least
one EC.

To provide a simpler test environment the SC software
was ported to a standard x86 Linux PC. This was achieved
in short time by using several quick and dirty short cuts to
remove the interaction with the ECs .

Success with this fast implementation encouraged to re-
work the central SC software, which is device manager and
device model. Dependencies on the underlying EC soft-
ware were separated. Equivalents for stand alone opera-
tion, without underlying ECs, were developed.

By simple makefile switch, the device manager can be
build for the GSI VME environment as well a for a stand-
alone Linux installation. This was already helpful in an
early stage where prototypes of Java GUI applications were
developed by Cosylab and could be tested easily in Ljubl-
jana.

M-Box

The x86 implementation in first stage provided only
dummy properties. Because up to now all equipment in
the control system is connected via EC controllers, the x86
version was not used for equipment handling.

However, interfacing to equipment can be integrated eas-
ily into the properties. This allows using non-VME con-
trollers as front-end node in the GSI control system.

First usage is for a stepper motor driver, to position the
new septum in the GSI synchrotron [1]. Because of its ca-
pability of driving several axes simultaneously, Cosylab’s
M-Box was selected to drive the motors. It integrates a
PMAC stepper motor controller onto an MicroIOC, which
is an embedded Linux computer.

Since the device manager depends on rather general re-
sources only, it could be straightforwardly build for the
MicroIOC. Driver functions provide access to the PMAC
stepper motor controller. The septum actuator is presented
in the control system identically to the devices installed on
the traditional VME crates.

Windows

For a long time, Windows operating systems were not
used in the control system. However, for many experts it is
their preferred working environment, and in the commer-
cial area many drivers are available for Windows systems
only. It is therefore desirable to support Windows in the
control system.

When a new team member joined us, who had worked
mainly in the Windows environment before, we started
with the first steps towards an integration.

The client interface, which is only lightly depending on
operating system functionality, could be ported and build
with Microsoft Visual C++ in short time. Work was done
by a newbie in control system technology. By this port,
Windows clients have access to devices in the control sys-
tem.

Encouraged by this fast success, porting of the device
manager itself was started. Again a re-work of the code
had to be done, now by identifying system dependencies.
These were caused by the different approaches on inter-
process communication (e. g. message queuing) and system
logging in Windows and Linux. We created a library with
a common layer for operating system dependent calls, pro-
viding the same interface for message queuing, signal han-
dling and system logging for Windows and Linux. Threads
are based on omniORB threads which define a common
wrapper for thread programming on several systems. The

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPA34

Control System Evolution

387



library contains a set of functions providing some Unix
functions that were non-existing under Windows.

After about two months work, the device manager is
functional on Windows, too.

CODE GENERATOR

While the device manager can be installed easily, writing
the device specific implementation can be cumbersome. A
set of properties has to be implemented to represent the
specifics of the device.

On the other hand, clients must use the properties cor-
rectly. To assure that both sides fit, the implementation
should be derived from a common interface definition.

We invented a XML Schema Definition for GSI equip-
ment models. In present, C++ header files and source skele-
tons for device servers are created from the XML represen-
tation of the equipment models (cf. listing 1 for an exam-
ple) using a XSLT style sheet processed by XalanJ. The
class definitions for the device properties and the proto-
types for the action methods (read, write and call) are cre-
ated automatically (fig. 2). This includes the in-code docu-
mentation of property data and parameters using Doxygen,
supporting the generation of API documentation in HTML
and LATEX format.

Developer

XML
device definition

XML Schema

XalanJ XSLT

C++ headers

C++ source skeletons

Doxygen

API docs

LATEX

PDF

HTML

create validate

Figure 2: Workflow for the generation of C++ sources and
API docs from XML device definition

Listing 1: Example of a XML device definition

<eqmod>
<name>MX</name>
<creator>KlausHoeppner</creator>
<version>09.01.01</version>
<description>Multiplexed Dipole

Magnet</description>
<variant id="1">PERMANENT_SIS</variant>
<variant id="2">SHARED_SIS</variant>
<variant id="3">PERMANENT_UNI</variant>
<property category="master">
<name>INIT</name>
<description>Initialize</description>
<action type="call" medlock="all"/>

</property>
<property category="slave">
<name>CURRENTS</name>
<description>Current Set

Value</description>
<action type="read" medlock="none"/>
<action type="write" medlock="vrtacc"/>
<data type="Float32">
<value name="current">Current (Set)</value>

</data>
</property>

</eqmod>

CONCLUSION

The renovated front-end software with its new network
communication is now ready to be used in GSI’s acceler-
ator controls. Intentionally developed for Linux PowerPC
VME boards to replace the outdated SC controllers, it can
be easily used in other environments, too.

With the new device manager a flexible controls frame-
work is available. Being restricted to VME front-ends in
the past, the GSI control system now allows integration of
other front-end platforms, too. The M-Box stepping motor
controller is a first step towards well adapted solutions for
future demands in the control of accelerator equipment.

REFERENCES

[1] J. Dedič, J. Bobnar, I. Križnar, R. Šabjan, R. C. Bär, G. Fröh-
lich, K. Herlo, U. Krause, M. Schwickert, “Customizable
Motion Control Solution Supporting Large Distances”, ICA-
LEPCS’07, October 2007, Knoxville, WPPB18, http://
www.sns.gov/icalepcs07/.

.

WPPA34 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

388


