
EPICS PORTABLE CHANNEL ACCESS SERVER FOR MULTIPLE
WINDOWS APPLICATIONS

E. Tikhomolov, G. Waters, R. Keitel
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

Abstract
The RF control systems for the ISAC Radioactive

Beam Facility are running on dedicated PCs under MS
Windows operation system. For historical reasons they
were interfaced into the EPICS based ISAC control
system with a simple TRIUMF developed UDP/IP
protocol. In order to improve the integration of the RF
systems, it was decided to implement an EPICS Portable
Channel Access Server (PCAS) on the Windows
machines using the PCAS API provided from the
collaboration in form of a WIN32 DLL. The main
challenge for this implementation was the requirement to
support multiple RF controls applications on a single PC.
In addition, problems due the to different name decoration
schemes of Borland C++ used in the RF controls
applications and Microsoft C++ had to be overcome. The
TRIUMF version of PCAS (TRPCAS) consists of a
WIN32 DLL, which interfaces the RF applications to the
EPICS DLL. An additional application uses the same
DLL to provide information on all processes running.
Shared memory is used to implement support for multiple
RF applications. The API to TRPCAS is kept simple to
avoid name decoration problems. TRPCAS uses XML
configuration file. The advantages and limitations of
different models of shared memory, the synchronization
mechanism for local/remote control, and other details of
the implementation are discussed.

INTRODUCTION
The integration of controls applications developed by

different groups on different platforms is usually a
challenging problem. At TRIUMF, the RF control sub-
systems of the ISAC Radioactive Beam Facility are
developed by the RF group. They must be integrated into
the EPICS based central control system. The RF control
sub-systems are running on dedicated PCs under the MS
Windows operation system [1]. The EPICS system uses
Sun workstations and Motorola MV162 VME based IOCs
(input/output controllers). In the existing system,
communication between an EPICS IOC and the RF sub-
systems is provided by a TRIUMF developed UDP/IP
protocol [2]. Figure 1 shows the components of the
overall distributed system, including the Linux based
operator consoles.

In EPICS there exists a framework for integrating non-
EPICS control systems, the Portable Channel Access
Server (PCAS). Under MS Windows PCAS is an
application programming interface (API) distributed as
WIN32 DLLs. By using this API it is possible to
implement a control application, which runs on a PC and

communicates with EPICS applications using the
standard Channel Access (CA) protocol.

Figure 1: Run-time configuration of RF Controls System

with TRPCAS

One limitation of PCAS is that only one server instance
is allowed per internet node. In addition, the PCAS API,
although very flexible, is non-trivial and puts a
considerable burden on controls programmers who are not
familiar with EPICS. We decided therefore to develop a
TRIUMF version of PCAS (TRPCAS), which has
asimplified API and which can support more than one
instance of a controls application on a PC.

REQUIREMENTS FOR TRPCAS
The implementation of TRPCAS was based on the

following requirements:
• Simple API for interface between Windows control

applications (WCA) and TRPCAS
• Support of single and multiple control applications

mode
• Easily configurable
• Can be switched between local and remote control

modes
• Manages crashes of Windows control applications

IMPLEMENTATION AND ISSUES
TRPCAS was implemented as a single DLL that has a

set of simple API functions for the Windows control
application (WCA) developer. In addition it incorporates
several diagnostic API functions.

Proceedings of ICALEPCS2003, Gyeongju, Korea

518

TRPCAS API
TRPCAS had to address the fact that the RF control

applications are developed using Borland C++, whereas
the EPICS PCAS DLLs were implemented with
Microsoft Visual C++. The difference of these tools is
quite dramatic in their name decoration schemes. This
makes it difficult to use some powerful features of C++,
such as virtual functions, in interfacing to the TRPCAS
DLL. The TRPCAS API was therefore implemented with
C-like global functions.

The following API functions handle basic operations
for the WCA developer:

• int TrPcasStart(). Starts the CA server. Returns status.
If operation is successful status is zero, otherwise
function returns error number.

• int TrPcasStop(). Stops the CA server and performs
necessary clean up of resources. Returns status.

• int TrPcasRegisterPv (char * pName). Registers a
process variable (PV) specified by name. Returns a
handle to the PV.

• int TrPcasRegisterPvWithCallback(char *name, void
(*f)(int, double)). Registers a PV and callback
function associated with this variable. Any time
when the PV is updated by the EPICS application,
the callback function is called. Returns a handle to
the PV.

• int TrPcasSetPvValue(int n, double *pvalue). Sets
value using the handle of a registered PV. Returns
status.

• int TrPcasGetPvValue(int n, double *pvalue). Gets a
value using the handle of a registered PV. Returns
status.

The following functions set and get values of process
variable attributes, such as HOPR or LOPR, using a PV
handle, the name of the attribute and the value as
character string:

• int TrPcasSetPvAttr(int n, char *, char *value).
• int TrPcasGetPvAttr(int n, char *, char *value).
For setting remote or local control the following

functions are used:
• int TrPcasSetLocal(bool mode). Disables writing to

all PVs by EPICS applications.
• int TrPcasSetPvLocal(int handle, bool mode).

Disables writing to a single PV by the EPICS
applications. Returns status.

Single and Multiple Application Mode
In single application mode, the TRPCAS server DLL

shares the data space of the WCA and the server is started
transparently by the DLL.

In multiple application mode, shared memory is used
by all applications which call the TRPCAS DLL. An
additional server thread that uses this shared memory was
implemented. Although a transparent server start would
be possible in this mode, it was decided to provide a
separate “server application”, which also uses the
TRPCAS DLL. This allows implementation of server
diagnostics and keeps all WCAs symmetric. TRPCAS

prevents possible mode conflicts and requires different
PV names for each WCA.

Figure 2 shows that in multiple application mode
additional threads for updating values and pointers to
callback functions in shared memory are started.

Management of Shared Memory
We evaluated two methods of shared memory

management: The first method uses pragma instructions
to the linker. Its main advantage is that program modules
can easily access variables placed into global memory, but
the global memory is declared at compile time and
therefore less flexible. The second method of shared
memory management uses memory-mapped files. These
can be created and deleted at run-time and are more
flexible than the pragma-model. In this case, instances of
classes can be easily serialized into shared memory.

TRPCAS was implemented using the pragma-model
with a shared list of pre-allocated process variable data
structures.

Remote and Local Control
The ISAC RF applications and most other WCAs

require local control, i.e. from the Windows-based GUI at
the PC location. In this mode it is necessary to disallow
process variable changes from EPICS applications.
TRPCAS implements this by keeping track of the origin
of change requests. It is possible to disable writing from
EPICS applications to individual or all PVs.
Local/Remote switching is from the WCA GUI. Users at
the EPICS consoles are informed about the mode change
through a “remote/local” process variable.

Start TrPcas
Server Appl.

Start Listening
Server TrPcas

Start WatchdogAndCallbackFunctionThread to
update callback pointers in shared memory

Start Update PvsThread to
update values in shared memory

Single or Multiple
Applications ?

Start

Start Single Windows
Control Application

Start Multiple Control
Applications

Stop Windows
Control Appl.

Register/Unregister
 Pvs

Stop
TrPcas

Multiple Appl Mode

Single Appl Mode

Figure 2: Starting TRPCAS in single and multiple
application mode

Proceedings of ICALEPCS2003, Gyeongju, Korea

519

Managing Crashes of Windows Applications

TrPcas Components

TrPcas.dll

EPICS Portable Channel Access Server
(PCAS)

ca.dll Com.dll gdd.dllcas.dll

Additional Components

xerces.dllwsock32.dll MFC42.dll

PvCfg.dtdPvCfg.xsl

TrPcasCfg.xml

Figure 4: Components for running Windows control
applications

Each WCA registers its own set of process variables
and deregisters them at the time of exiting. If a WCA
crashes in multiple application mode, its registered
process variables remain in an orphaned state. The
TRPCAS server application addresses this situation by
keeping track of all running WCAs with watchdogs. If a
WCA crashes, its process variables are deregistered
automatically by the server application after a timeout
period. A crashed control application can therefore be
restarted without closing TRPCAS and disrupting other
live applications.

Figure 3 shows the console window of the TRPCAS
server application window for the state when three control
applications are running. The state of these applications is
immediately visible from the watchdog counters. The
console window also shows diagnostics channels that are
included with TRPCAS.

COMPONENTS
A TRPCAS user must install the following components

on the Windows PC:
• EPICS DLLs: ca, cas, com, and gdd
• the TrPcas.dll which is the subject of this paper
• the TrPcas.exe server application (only needed for

multiple application support)
• the files PvCfg.xsl and PvCfg.dtd which contain

XML definitions
• the TrPcasCfg.xml XML configuration file defining

the process variables, which are accessible by EPICS
• support components: MFC42.dll is used for error

messages from TrPcas.dll, winsock32.dll for network
support, and xerxes.dll for XML parsing.

This component set is shown in Figure 4.

Figure 5 shows the include and .lib files that are
necessary for development of a WCA and for a TRPCAS
server application.

Figure 3: Console window of the TRPCAS server
application

Windows Control
Applications

TrPcas.libTrPcas.h

TrPcasConsole
Application

wsock32.lib,h

xerces.lib,h

ca.lib,h; cas.lib,h;
Com.lib,h; gdd.lib,h

Figure 5: Components needed for development

SUMMARY
TRPCAS has been used on an RF cavity test setup for

approximately one year since its first release. During this
time, the only modification needed involved the XML
configuration file. TRPCAS will be fully tested when the
more than 40 RF systems of the ISAC-II facility are
installed.

REFERENCES
[1] A. K.Fong, M. Laverty, S. Fang, “RF Control Systems

for the TRIUMF ISAC RF,” APAC’01, Beijing,
September 2001, p. 642.

[2] R. Keitel et al., “Status Update on the ISAC Control
System”, ICALEPCS’01, San Jose, November 2001,
p. 125

.

Proceedings of ICALEPCS2003, Gyeongju, Korea

520

	EPICS PORTABLE CHANNEL ACCESS SERVER FOR MULTIPLE WINDOWS APPLICATIONS
	INTRODUCTION
	REQUIREMENTS FOR TRPCAS
	IMPLEMENTATION AND ISSUES
	TRPCAS API
	Single and Multiple Application Mode
	Management of Shared Memory
	Remote and Local Control
	Managing Crashes of Windows Applications

	COMPONENTS
	SUMMARY
	REFERENCES

