
TOWARD THE ELETTRA NEW INJECTOR CONTROL SYSTEM

D. Bulfone, M. Chiandone, M. Lonza, L. Pivetta, C. Scafuri
Sincrotrone Trieste, Trieste, Italy

Abstract

The control system for the new ELETTRA booster in-
jector is currently in the design phase. Some of its main
components and technologies, both hardware and software,
have already been selected or are in the final testing phase.
Our choices regarding Linux, C++ toolkits for GUI devel-
opment and CORBA are discussed. In order to acquire
some operating experience and to perform the final tests
under realistic working conditions, the candidate tools and
technologies are being used to develop systems and pro-
grams that are integrated in the existing ELETTRA control
system. The experience gained with some application ex-
amples is also presented.

SELECTING A GRAPHICAL USER
INTERFACE (GUI) TOOLKIT

Since the beginning of operations 10 years ago, the
ELETTRA control system has used graphical control pan-
els. All the currently used control panels are based on the
Motif toolkit. The new control system will, of course, also
use a large number of graphical control panels. Although
we will continue to support Motif for the legacy applica-
tions, we selected a more modern graphical toolkit for the
new applications.

Constraints and Selection Criteria

The new toolkit must fulfill several constraints:

• It must be based on a modern, fully object-oriented
design; moreover it should be possibly based on an
object-oriented programming language.

• It must have a rich set of native widgets.
• Designing and adding a new widget should be an easy

and well documented process.
• It must be independent of any single hardware plat-

form and operating system
• It must be portable at least on Linux and HP-UX, pos-

sibly also on Windows.
• It must run with acceptable performances on our cur-

rent control room consoles (HP9000 C200).
• Integration into the existing ELETTRA control sys-

tem must be possible and straightforward.

Another fundamental criterion for the selection is the ex-
pected lifetime and evolution of the toolkit. It should be
available, and possibly improve, for many years. In such
a span of time the control system consoles hardware will
be upgraded several times, while the various software ele-
ments of the control system will follow a different evolu-
tion. In other words: code is the asset to be preserved. We

must be able to deploy the control system software (recom-
pile and eventually adapt) on the evolving hardware plat-
form as it becomes convenient. We think that the availabil-
ity of the full source code is a necessary and discriminatory
factor for fulfilling this criterion. This belief derives from
our past experiences.

An important aspect that received due consideration is
whether the toolkit is used by a large and active community
of developers, which usually insures code quality and the
thrust for improvements and innovation.

Candidates and Final Choice

Keeping in mind the above constraints, we evaluated a
number of modern GUI toolkits:

• java/Swing
• gtk [1]
• wxWindows [2]
• Qt [3]

Our choice is Qt. It fulfills all our requirements. It
is available in source form, it is written in C++ and has
a sound, well designed object-oriented architecture. Qt
is also the basis of the Linux KDE desktop [4]. Other
important features of the Qt toolkit are its extensive and
clear documentation, its support for graphical database ac-
cess and the availability of a panel-designer/code-generator
directly in the toolkit distributions. Other toolkits have
also panels-designers/code-generators, but they are sepa-
rate products; therefore their integration with the toolkit is
not always complete and often out of date.

Figure 1: 3HC cavity panel

The portability of Qt based designs have been success-
fully tested on Linux, HP-UX 11.0 and Windows. Some
Qt based control panels are already in use at ELETTRA
(Fig. 1) for the monitoring of the 3rd Harmonic Cavity and
cryogenic plant. Developing such panels demonstrated also

Proceedings of ICALEPCS2003, Gyeongju, Korea

460



the perfect compatibility of the new C++ based graphics li-
brary with the old C based RPC library.

Although java/Swing is largely used in the accelerator
community, we have ruled it out as our main GUI for a
couple of practical reasons. Its performance is rather poor
on the existing operator consoles. It requires ”native in-
terfaces” in order to call functions of our legacy C RPC
libraries; these ”native interfaces” must be compiled for
each platform we intend to use so that the advantage of
having a single binary usable on every platform is lost.

MIDDLE-WARE FOR DISTRIBUTED
COMPUTING

The control system of the new ELETTRA injector is
a two-layer distributed architecture. Communications be-
tween the layers are based on TCP/IP protocol over Eth-
ernet. The TCP/IP protocol will generally not be exposed
directly to the programmers who will make use of suitable
middle-ware tools. The chosen middle-ware will be a de-
termining factor both for the software architecture and for
the performance of the control system.

Why CORBA

The first thing that we looked for was a middle-ware
package that could support natively an object-oriented pro-
gramming model. This has led us to the choice of a suit-
able CORBA [5] implementation. CORBA is a mature and
well defined standard. Although other middle-ware pack-
ages, like SOAP or XML-RPC, are gaining momentum, we
think that on one hand the process of their standardization
is not yet settled enough and , on the other hand, that the
programming model offered is rather a procedural one (a
modern RPC) than an object-oriented one. Interoperabil-
ity between different implementations and performance are
still, at least for us, two open questions.

Interoperability between different implementations of
the same middle-ware is very important. This capability
will prevent us from becoming locked to a single vendor or
open source project. It will also give us the possibility to
choose the implementation which fits better the needs of a
given server or client. For example we could choose an im-
plementation with a small memory footprint and a limited
set of features at the expenses of speed for a system with
limited resources. In this respect, an important character-
istic of CORBA is that it mandates the use of well defined
language-mappings and standard interfaces for interacting
with the middle-ware. In this way the structure and code
of CORBA clients and servers can be used with different
CORBA implementations with very small or no changes at
all.

Which CORBA

There are many CORBA implementations available. We
decided to select a leading implementation for our control

system. This implementation must comply with some re-
quirements. As for the GUI, we want to have the full source
code available, licensing policy must be clear and not too
restrictive. The middle-ware must be available with bind-
ings for C++. As a minimum, it must have a robust imple-
mentation of the Naming Service [6].

Our first selection restricted the candidates to a small
number of implementations: omniORB 3.0.5 [7], TAO
1.3.1 [8], mico 2.3.7 [9] and ORBacus 4.0.1 [10]. All of
them satisfied our basic requirements and showed a reliable
behaviour without any evident major bug. The discriminat-
ing factor has thus been the speed performance. A series of
measurements has been carried out in a realistic scenario.

Tests and Results

The testing setup consisted of two computers. The client
was a desktop PC with a Pentium III CPU at 455 MHz run-
ning Linux with 2.4 kernel. The server machine was a Mo-
torola MVME 5100 board with PPC 7400 CPU at 400 MHz
running Linux with a 2.4 kernel. This VME board will
be the standard field-level board [11]. The machines were
connected by means of 100 Mbit/s switched Ethernet. The
benchmark consisted of a collection of methods reflecting
typical control system actions, e.g. setting and reading of
basic types like integer and double precision numbers, set-
ting and readings of arrays of various sizes, etc. Clients and
servers were compiled using the different CORBA imple-
mentations under test. It should be emphasized that the
client and server code needed very little adaptations for
switching from one implementation to the another. Execu-
tion times were then collected by taking the mean of 1000
successive calls for each method. All the implementations
demonstrated complete interoperability. For our selection
we considered only the results between client and servers
using the same CORBA. Some preliminary tests showed
that mixing two implementations did not improve the per-
formance.

The results of the benchmark (a summary in Tab. 1) show
that the fastest CORBA of the group is omniORB. The re-
sults show also that all the tested CORBA implementation
have reasonable performance and a correct behavior ver-
sus large data sets, scaling linearly with size (Fig. 2). Om-
niORB has thus been chosen as the preferred CORBA im-
plementation for the new ELETTRA injector control sys-
tem. However, we do not rule out the possibility of using
also other implementations for special tasks.

TOWARD A CORBA BASED
APPLICATION PROGRAMMING

INTERFACE

The CORBA middle-ware by itself is not enough to build
a practical control system. The number of CORBA features
effectively used is just a fraction of those available. Client
and server programs will mostly follow some standard pat-
terns. So it is natural to capture these patterns and features

Proceedings of ICALEPCS2003, Gyeongju, Korea

461



Table 1: Times in microseconds
Call omni mico tao orbacus
Void 403 652 704 1055
GetInteger 372 686 703 965
GetDouble 374 684 701 963
GetInteger[512] 746 1086 1143 1395
GetInteger[1024] 909 1260 1314 1613
GetDouble[512] 907 1484 1304 1538
GetDouble[1024] 1371 2147 1711 1966

Figure 2: times for reading an array of doubles of increas-
ing length

into a library of objects and functions, offering the control
system programmers a lean and effective Application Pro-
gramming Interface (API).

The other fundamental issue in the design of the control
system, and as a consequence in the design of the API, is
the device object model. We have chosen to base our design
on the so called generic interface model. In a very rough
sketch: the control system is composed of a collection of
devices,accessed by means of unique names. Each actual
device belongs to a device class. The class of the device
defines the list of attributes which can be read or written to
get or set the status of the device. Each attribute is distin-
guished inside a device by its unique name. Other issues,
like asynchronous calls, publish/subscribe on changing at-
tribute values are beyond the scope of this paper. This ob-
ject model is adopted by many accelerator control systems,
for example see [12] [13].

A Pilot Project for Testing the API concepts -
First Results

We are now in the phase of consolidating the specifi-
cations and starting some pilot projects to test different
designs and implementations of the API and the generic
device model. On the server side some efforts are being
spent to design a good interaction model with the underly-
ing real-time extensions to the Linux kernel. On the client
side, we are testing the integration of the CORBA API with
the Qt GUI toolkit and ways to optimize the performance.
The monitor application (Fig. 3) for the new digital Beam

Position Monitor [11], one of our pilot projects, has an ef-
fective graphical interface capable of displaying X and Y
beam position diagrams, Fourier transforms and beam po-
sition density maps reliably with a rate of 25 frames per
second. These good results make us confident that the se-
lected components, both hardware and software, and the
overall architecture of the new control system, although not
yet complete and fully optimized, will allow us to build ef-
fective, reliable and performing application software.

Figure 3: digital BPM monitor panel

REFERENCES

[1] http://www.gtk.org

[2] http://www.wxwindos.org

[3] http://www.trolltech.com

[4] http://www.kde.org

[5] Object Management Group, “The Common Object Request
Broker Architecture: Architecture and Specifications”,1998.
ftp://ftp.omg.org/pub/docs/formal/98-12-01.pdf

[6] M. Henning, S. Vinoski, “Advanced CORBA Programming
in C++”, Chapter 18, Addison-Wesley, 1999.

[7] http://omniorb.sourceforge.net

[8] http://www.cs.wustl.edu/ schmidt/TAO.html

[9] http://www.mico.org

[10] http://www.orbacus.com

[11] D. Bulfone et al., “New Front-End Computers Based on
Linux-RTAI and PowerPC”, These proceedings.

[12] K. Kostro et al. , “Controls Middleware - The New Genera-
tion”, EPAC 2002, Paris, 2002.

[13] J-M. Chaize et al. , “Tango - An Object Oriented Control
System”, ICALEPCS 1999, Trieste, 1999.

Proceedings of ICALEPCS2003, Gyeongju, Korea

462


